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TRISTRAM DE PIRO

ABSTRACT. This paper continues the work in [4], in which it was

proved that given (p, J) satisfying the relations;

with compact support, the fields (E, B) defined by Jefimenko’s
equations exist. We prove here that the fields (F, B) are quasi split
normal, so that the methods of [1] apply.

Lemma 0.1. For charge and current (p,J), the relations;

are invariant under transformations of the base frame by a velocity
vector v, with |v| < c.

Proof. The proof that (i), (i7), (iv) hold for the transformed quantities

(¢, T) is done in [3]. We check that (i) holds for the standard boost
vep, with 0 < v < ¢. We have that;

/

p=(p— L)
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1o 197 _ @
V') + 25 =0

as required.
O

Lemma 0.2. Let {E, B} be the electric and magnetic fields defined
from the charge and current (p,J) satisfying the relations;

Then the fields E and B are smooth and of very moderate decrease.

Proof. The existence and smoothness of the fields follows from the re-
sults of [4]. In particular, we obtain that [J?(E) = 0, from the property
(iii) and a result in [3]. We claim that the initial conditions Ey and 22|,
are of very moderate decrease, and that the 9 components of D(E)
are of very moderate decrease. By Jefimenko’s equations, noting that
the retarded time t, = |T "l and using (iii), we have that:

Bolr) = & (B -7y + £ 5 - 7y - G ar

dmeg JV LT c[r—7| clr—r

T—T

_ op 1
7 tr) (= —\ L7 tr) b
o Ry Ty st

while by Kirchoff’s formula, with the support of {p, % lo, V(po), 8%—7(5”) lo}
supported on a ball B(0, s), we have that;

P t) = o Jsperr -ty —Ctr 220 (@) +po(y) + Dpo(3)« (T —7)dS(7)
= 7 Jsne ey T = T1%10@) + p0(7) + Dpo() « (7 — 7)dS(7)
27 t,) = i Sspr o IT = P15 10@) + 210(@) + D(%10) @)

(¥ —7)dS(y)

VO t) = e fspe e T =T 125216(7) + v (p0) (7)
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+D((p0)) (@) « (¥ —T)dS(y)
so that;

— — s [s ) IT=7'15210(@)+00 @)+ Dpo(0)-(F—7)dS @) ,_
EO(T) 47!'60 V 4‘ Arle 12 O - |(:t 7|2 (r_rl)

(i Ssmr ey =71 28 10(8)+ 5210 () +D(3210) (0)-(5-7)dS (@)

+ c[F—7| (F - F/)A

(2 S ey P71 252 0@) 47 (00) 3)+D(7 (p0)) (@)-(7-T)dS @)

+ = ]dT/

F—7r
= i [l s i T = T15210@) + po(@) + Dpo(7)

(7 —7)dS@) (T —7')

T Jsne e T = 7158 10@) + 21o(@) + D(3)1o(@)

(7 —7)dS(@)) (T —7')

i Joner iy IT = T125200@) + V(p0) (@) + D((00)) (@)
(¥ —7)dS(y))]dr’

= FEo1(F) + Eoa(T) + Eo3(T)

where V' = U, B(ﬁ,s)Hd and H, is the hyperplane defined by;
{F|d=7|=|F-7|}

We have that for 7 sufficiently large and;

maz .0 (| 2ol pol, [ Dpol) < M;

[Eoa(7)] < |47r50 Jull 47r\7~ It f(SB o B T~ T I510@) + po(@)
+Dpo(y) - (7 = 7)dS@)) (T —7)ldr|

< s (G + 4i1;M: 7+ el

47rMs
< 47reo fV [7— 7"\3
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_ 3Ms
= Jv = 7'|3d7

82
< M= Vol(B(0, 5))maz g fHd [F—7 \3

3Ms? 47s® dxdy
= — - max D —
T4 3 dEB 0 S fR I2+y2+7'2)%
12Mms® RdR
= max 0
127 deB(0, 8) fO (R2-+12)

1 ]oo
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1
= 2r M $"maz e g (o5 7o
where r; is the shortest distance between 7 and Hj.

so that;

El

|Eoq(T)| < 2$5
2

_ 4AwMsP
[7]—s

<AnMs®Z (7| > 2s)
7
— 8w M s
7

so that Eo;(7) is of very moderate decrease.

We have that;

Eos(F) = o [, (C(F, 7)) (T —7)dr’

where, by the wave equation for p;

CF ) = i Ssme vy T 152 10@)+ %o (@)+D %10 (7)
(7 —7)dS(y)

= a5 s rrns@s T =T 1 V2 po@) + 510() + D(510)(7)

«(y = 7)dS(y)
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and;

Boa) < 3 Jy [DEFdr + 24| J, B F)(F — 7)dr'| (AB)
where;

D(F7 F/) - m féB(?’,W—?’\)ﬂB(ﬁ,s) |F_T/|C2 VQ pO(@) + %h}(g)d‘S’(y)
BT = m f(SB(F’,\?—?’DﬁB(ﬁ,s) D(%b)@) - (7 —7)dS(y)

We have that, using Lemma 0.4, that;

|D(r, 7)| <

_/‘

(T — +4mMs?)

|’|

47rc\

47r\r 'r’\3 + c|r r’|3

so that, using (AB) and following the method for Eq(7) above, we
have that;

Bo2(7)| < g2 (62 + M f\/| |3d7' + | [, |E(F ) (T —7)dr|

— 4dmeg 47reo
2
S 47}60 (% + MTS)47r3$ ma‘rdEB(O s) 47I'6()| fV T -7 >d7—/|
S 47reo | fV T - FI)AdT/ (G‘H)

for some constant H € Rq. For the decay in the last term, we have
that, using lemma 0.4 again;

BT < el S D2 10)(@) - 7ldS @)
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so that, from (GH), and using the method above;
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< Bt [ + i
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where {G,H,K,L, N} C R, so that Ey,(7) is of very moderate
decrease.

A similar argument establishes that Eg3(7) is of very moderate de-
crease, using repeated application of lemma 0.4, so that Ey(7) is of
very moderate decrease. By differentiating under the integral sign and
using the chain rule, we have that;

2
) v 2B e () )
%_t|0 47reo fV |F—7;’\; (T - T/) 827?_?’|T (T’ - T/) + |871’£—7“7;|r]d7—

We have that {22 5 a?wV( 8t)} satisfy the wave equation, with the
initial conditions determined by the corresponding derivatives of the
initial conditions {po, ‘gf |0} noting for example that the initial condi-
tions of a?? are 821t|0 = c*v? (p)|o and 831t|0 = ? 2 (%b) both of
which have compact support. We can then use Kirchoft’s formula, as

above, and establish the very moderate decrease of aE “[o(T).

Again, differentiating under the integral sign and using the chain
rule, we have that, for example;

Lo = s o [T = 7=+ (1,0,0) 3 (7 - 7

y
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(ry—r}) — 1228 (7 — 7Y (ry — r}) + 245220 (1,0, 0) — 2248 (7 — 77y

c |[F—7]2
(r —r}) — 1L () — ) — OEL () — 1)) dr

We can then use the same reasoning as above, that {m, 322t V(% a0)}
satisfy the wave equation, and use Kirchoff’s formula noting that the
decay in 7, for fixed 7, is greater than in previous cases, to establish the
very moderate decrease of 42y, and similarly for {%—5\0, 9E|y}. Finally,

we use the vector version of Kirchoff’s formula for E, to obtain for ¢ > 0;
E(Ft) = 25 Jspren A% 10@) + Eoly) + DEo(y) - (7 —T7)dS(7)
and, for t < 0;

E(T.t) = 5w Sy —t 5 10(@) + Eoly) + DEo(y) - (7 — T)dS(7)
and we can see that, for ¢ > 0, sufficiently large |F|, depending on ¢;

[E(F1) <

— Ar 2t2

T At (et + 5y + )

7 [r|—ct

< Dt

|7

for some {C4,Cy,C3, D} C R~g, where %—ﬂo is of very moderate de-
crease Cy, Ey is of very moderate decrease C; and Cs = max;<; j <3Cij,

where 376; is of very moderate decrease Cj; € R, so that E(7,t) is of

very moderate decrease for ¢ > (. Similarly, E(7,t) is of very moder-

ate decrease for ¢ < 0. The proof for B is similar, using the fact that

v x J =0, so that (J?(B) = 0, and using Jefimenko’s formula for B.
O

Lemma 0.3. Addendum to Uniqueness of Representation of Arcs Lemma

Given @ € B(0,s), with @ # 0, there exists, up to a set Bl of
measure zero in B(0,s), a unique v € V = UdeB(ﬁ,s) H,, such that
B(v, [v —F|) passes through @, with B(0,|a|) and B(v,|v —F|) sharing
a common tangent plane at a. It follows that we can define a map
v: B(0,s) \ Bl — V \ Hg which is a homeomorphism onto its image.

Proof. The proof is straightforward, given a generic @ # 0, the line [y 5
intersects the hyperplane Hg in a unique point v, unless lpz and Hz
are parallel, in which case @. (T — @) = 0. Letting 7 = (ry, r9,r3), this
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locus is defined by;
(2 2 2y —
ayry + agry + azrs — (af + a3 + a3) =
ff 2 2 2 _
iff af — ayry + a5 — agre + a5 —azrs =0
M (0 — )2 4 (ag — 2)% + (a5 — )2 =T + 2 + 3
1 2 2 2 37 2/ T 1 4 4

which is a sphere centred at I, with radius z—‘ Clearly, the intersec-
tion of this sphere with B(0, s), Bl, is a set of measure zero in B(0, s).

For 7 € B(0, s), with |y] = w, 0 < w < s, we have that, for A € R;
Ay =7l = Xy — 7|

iff wA—1|=|\y—7|

iff w?(A —1)% = (A1 — 71)° + (Mo — 12)% + (Ays — r3)?

iff Nw? — 20w + w? = Nw? — 2)7 .7 + [7]?

iff N(—2w? +2y.7) = |7 — w?

iff A = L

The exceptional locus Bl N §B(0,w) corresponds to the locus;

which is a plane intersecting the sphere 6 B(0,w) in a circle C,,. We
define the map ~, for 7 € B(0,s) \ Bl by;
_ 72—|7)? —
(@) = %ﬂwy
The fact that ~ is bijective and onto V' \ Hy follows from the orig-
inal uniqueness of representation of arcs lemma in [4], noting that we
excluded the case that an arc passed through the origin 0 € B(0, s).

The above argument allows us to define the map ~, which is continuous
with a continuous inverse.
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Lemma 0.4. First Corollary to Hyperplane Lemma

We have that there exists C' € Rq such that for f smooth and hav-
ing compact support on B(0,s);

| Jsn j—rpp.g VIO@AS@) < 75

for 7 disjoint from B(0,3s).

Proof. The result is obvious if the arc dB(7, [F — 7'|) is disjoint from
B(0,s), so we can assume that there exists d € B(0,s), with d €
IB(7, | —7|), in particularly;

|d —7|=F —7|

so that 7 € Hy and Hy is disjoint from B(0, s), otherwise we could
find d' € B(0, s) with |[d—d'| = |F—d'|, so that |F—d'| < 2s contradicting
the hypothesis that 7 is disjoint from B(0, 3s).

For7 € Hy, d € B(0, s), we can use the representation of arcs lemma,
see [4], to show that without loss of generality, i 4 passes through the
origin of B(0,s). We let T; be the tangent plane to §B(7,|F — 7|) at
d, so that by the hyperplane lemma in [4], (*), we have that;

demB(ﬁ,S) vV (f)@)du =0

where dy is Lebesgue measure. Changing coordinates, let 7 have co-
ordinates (0,0, R), where R = |F — 7|, let d have coordinates (0,0, 0),
and let Ty correspond to the plane z = 0. The hyperplane T} intersects
6B(0, s) in a circle S of radius w < s, S C z = 0 and we have that the
original ball B(0, s) shifts to B(@, s), where a = (0,0, a) and a < s with;

Jeconp@e V(O @dr =0 (x)

Let 0 B(7, R) intersect d B(@, s) in the circle T of radius w < w’ < s,
and suppose that T is centred at (0,0,b) with b < a. We have that;

IThere we assumed that the hyperplane passed through the origin of a ball
B; we can always make this assumption by choosing the ball B to contain the
original support V, setting f to be zero on B\ V and centering B at a point on
the hyperplane.
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b= R — Rcos(0)

where 0 < ¢ and tan(¢) = 5>, with a < s. For R sufficiently large,
R > 2a;

S __ 2s
tan(¢p) < ~E—TR

Nk

and as tan~! is increasing, cos is decreasing for small § > 0, using
Newton’s theorem;

0 <o¢< tan’l(%&
cos(0) > cos(tan™ (%))

b < R — Rcos(tan™'(3))

1+(%)?
=R—R(1-3(%)"+O(z))
=2 +0(z)

for some F € R~o, R > 1. Let pr be the projection from R3 to z = 0
restricted to 0 B(7', R) N B(a, s), then, using (x), (xx*);

| Sssir mnsms V() @AS@)

— | fynir mies VDT = [-_opns VD@ du(@)

=1 Lo P (D@Ar S @) — [y V()@ A(@)
< | oo (o 7 (@) = V()(@)duu()

Lo o 7 (@ dpr=S(@)) — du(@)| (HH)

For {Z,y} C B(0,s)}, we have, by the MVT, that;

V(N@E =@ < (DTl + D))l + DV ())s])[T =7l
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< 3mazge s, || D(V (1) (O)]][7 - 7]
= 3M|T — 7|

as V(f) is smooth with compact support, so that, using (xx), for
T € z=00N B(a, s), we have that;

pr = 7 (f)(@) — v (f)(@)] < MLE
and;

ooy (7 7 (@) = V() @)du(@)]

3M Ens?
S TR

To compute the change of measure, we use the parametrisation
prt:2=0— 6B(T, R);

[NIES

prt(z,y) = (z,y, R — (R* — 2* — ¢?)

)

so that, using Newton’s theorem:;

-1 _ T
bry = (1707 (Rz—z2—y2)%)
pryt = (0.1, )

1
(R?—22—y?)2

[dpr=S()) = du(@)| = |(oror — 1)dady

_ 1 1 d
= _ — 1|dxd
e oy~ Ldwdy
(R2—22-y2)2  (R2-a2-y2)2
S [ 1|dzd
- ‘ 2.2 1 xray
(1+4R2w -'—2y72)j

—xl_

=1 — L2 4 O() — 1]dady

2 R2Z_z2 42

xQ 2
= [%ﬁzy,yz + O(qr))dxdy

2

< [+ +O(%)]dxdy

— LR2_9gs

< %dxdy
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for some F' € R, so that;
| [econp@e P~ 7 (@) d(pr=S8(T)) — dp(®)]
< = mazse | v (£)0)]

Hrns*F
R2

and from (HH );

y Yy ms? ns?
|f53(?’,R)nB(a,5) V() @dS(@m)| < 3M§ 4 HR2F

C
<%

Lemma 0.5. Second Corollary to Hyperplane Lemma

We have that there exists C' € Rq such that for f smooth and hav-
ing compact support on B(0,s);

I faB(w,mm)mB(a,s) D () @dS@)| < ﬁ

for 7 disjoint from B(0,3s).

Proof. We use the notation in Lemma 0.4. We let;

hz,y) =/ R2+224+y>— R = O(%)
be defined on Ty correspond to the plane z = 0. Using similar trian-

gles, b(x,y) = h(x,y)cos(f), where 6 is the angle subtended by a line
drawn from 7’ to the point (z,y) in the plane z = 0. We have that;

b(x,y) — h(z,y) = h(z,y)(cos(d) — 1)
— bz, y)(1+0(6%) — 1)
= h(z,y)(O(3))

= 0( %)



14 TRISTRAM DE PIRO

using the fact, proved above, that 6 = O(%). By Taylor’s theorem,
we have that, for (x,y) € Ty;

pr (DT () (@, y) = D(V()(@,y.b(x,y))

= D(V())(w,y.0) + b(z,y) ZD(V(f))(2.y.0) + O(b(z,y)°)

= D(V(/))(,y.0) + b(z, y) ZD(V () (2, y,0) + O3)

so that;

pr (DT (). y) = D(V ()@, y,0)+h(w,y) & D(V())(,y,0)
+(b(z, ) — Mz, ) D(7(f))(z,y,0) + O(5)

= D(V(N))(,5.0) + h(z,y) ZD(V () (2, y,0) + Ozz) + Olzz)

= D(V(/))(,y.0) + h(z,y) & D(V () (2. y,0) + O(z) (AA)

We can now vary R as the coordinate z, and extend h(z,y) to a

function /22 + 42+ 22 — z on B(0,s). We can then use the original
hyperplane lemma to justify integration by parts on the plane T}, so
that;

fz:OﬁB(E,s) D(V(f))($a y7 O)d:u(aja y) = 6 (BB)
where 0 is the three by three zero matrix, and;
Jomonps M.y, 0)Z=D(7(f)) (. y,0)du(z, y)

= [o—onnas 52DV (M) (,y,0) f(z,y,0)du(z,y) (CC)

We have that;

Oh __ 2 1

9z |\ [r2iy2422 1=0(1)

%h _ 1 . 22 o O 1

022 \/x2+y2+22 (w2+y2+z2)% (z)

3h —z 2 3,3 )
93 = - + —O(L
023 (m2+y2+22)% (z2+y2+22)% ($2+y2+z2)% (22>



SOME ARGUMENTS FOR THE WAVE EQUATION IN QUANTUM THEORY 105

?h —zz _ 1
0z0x (.Z‘2 +y2 +22)% - O( 22 )
2%h —2y _ 1
020y (x2+y2+z2)% O(Z2 )

2

33h —z 3zx 1
8282I (m2+y2+z2)% (:E2+y2+22)% (z2)
3h —z 32y 1
020%y (z2+y2+22)% ($2+y2+z2)% (22>
8h 3zzy - 1
020xdy ~— (x2+y2+z2)% - 0(24)

so that, fixing z = R,

| —ons@s 7@ v, 0) 5 D(7 () (@, y, 0)dp(z, y)|| < 5

and by (AA), (BB), (CO):;

|| fz:OﬂB(ﬁ,s) pril’*(D(v(f)))(ly y)du(‘ra y)|| < %
for some {E, F'} C R~o.

The change of measure argument is the same as in Lemma 0.4, which
adds a correction of O(f5), so that we obtain the result.

O

Lemma 0.6. Let the fields {E, B} be as in Lemma 0.2, then Eq(T)
and By(T) are quasi split normal in the sense of [2].

Proof. .......... Using the method of opposites.
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