
A NONSTANDARD SOLUTION TO THE WAVE
EQUATION

TRISTRAM DE PIRO

Abstract. We follow d’Alembert’s method for solving the stan-
dard wave equation, in the nonstandard case, and compare the
solutions.

Definition 0.1. Given u ∈ V (Rη × Tν), we let;

ut(y, s) = ν(u(y, s+ 1
ν
)− u(y, s)), for (y, s) ∈ Rη × (Tν \ ν2−1

ν
)

ux(y, s) =
√
η

2
(u(y + 1√

η
, s)− u(y − 1√

η
, s)), for (y, s) ∈ Rη × Tν

We define the nonstandard unconvoluted wave equation, on Rη ×
(Tν \ ν2−1

ν
, ν

2−2
ν

) by;

utt − uxx = 0

Lemma 0.2. Given initial conditions {f, g} ⊂ V (Rη) there exists a
unique u ∈ V (Rη × Tν) solving the nonstandard unconvoluted wave
equation, such that u0 = f , and u0

t = g, and;

u(x, t+ 2
ν
) = 2u(x, t+ 1

ν
) + η

4ν2
u(x+ 2√

η
, t)− (1 + η

2ν2
)u(x, t)

+ η
4ν2

u(x− 2√
η
, t), (∗)

for (x, t) ∈ Rη × (Tν \ ν2−1
ν

, ν
2−2
ν

)

Moreover, if the standard initial conditions {u0, u0
t} are given with

∂i(u0)
∂xi ≤ D and

∂j(u0
t )

∂xj ≤ D, uniformly, for finite (i, j) ∈ N 2, then for

(t0, x0) ∈ Tν ×Rη, with t0 finite, and the choice η ≤ 4ν, utxx|t0,x0 and
uxx|t0,x0 are bounded, for the nonstandard equation generated by initial
conditions {v, vt}, with v0 = (u0)η, v

0
t = (u0

t )η.

Proof. Using the definition of the derivatives, the equation in Defini-
tion 0.1, and rearranging, we obtain the defining schema for u given in

1
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(∗). We are free to choose the values for the first two time steps, by
setting;

u(x, 0) = f(x)

ut(x, 0) = ν(u(x, 1
ν
)− u(x, 0)) = g(x)

First, observe, using Taylors’ Theorem, that v0xn and v0txn are bounded.
Suppose inductively, that there exists a constant Ci ∈ R, for i

ν
finite,

with;

max({u j
ν
,xn , u k

ν
, xnt : 0 ≤ j ≤ i, 0 ≤ k ≤ i− 1}) ≤ Ci

for n even, where vxn denotes the n’th derivative of v with respect
to x.

We have that;

v(x, i+1
ν
) = 2v(x, i

ν
) + η

4ν2
v(x+ 2√

η
, i−1

ν
)− (1 + η

2ν2
)v(x, i−1

ν
)

+ η
4ν2

v(x− 2√
η
, i−1

ν
)

and taking the n’th even derivative with respect to x;

vxn(x, i+1
ν
) = 2vxn(x, i

ν
) + η

4ν2
vxn(x+ 2√

η
, i−1

ν
)− (1 + η

2ν2
)vxn(x, i−1

ν
)

+ η
4ν2

vxn(x− 2√
η
, i−1

ν
)

Abbreviating notation;

vi,txn = ν(vi+1,xn − vi,xn) = ν(2vi,xn − vi−1,xn + η
4ν2

(vlsh
2

i−1,xn −2vi−1,xn +

vrsh
2

i−1,xn)− vi,xn)

ν(vi,xn − vi−1,xn) + η
4ν
(vlsh

2

i−1,xn − 2vi−1,xn + vrsh
2

i−1,xn))

= vi−1,txn + 1
4ν
vi−1,xn+2

|vi,txn | ≤ |vi−1,txn|+ 1
4ν
|vi−1,xn+2|

≤ C + 1
4ν
C = C(1 + 1

4ν
)
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vi+1,xn = 2vi,xn + η
4ν2

(vlsh
2

i−1,xn − (1 + η
2ν2

)vi−1,xn + η
4ν2

vrsh
2

i−1,xn)

= vi,xn − vi−1,xn + vi,xn + η
4ν2

(vlsh
2

i−1,xn − 2vi−1,xn + vrsh
2

i−1,xn)

=
vi−1,txn

ν
+ vi,xn + η

4ν2
(vi−1,xn+2)

|vi+1,xn | ≤ C
ν
+ C(1 + η

4ν2
)

Iterating, we obtain that;

for finite t;

|vt,txn | ≤ C(1 + 1
4ν
)[νt]

= C(1 + 1
4ν
)ν

[νt]
ν

≃ Ce4
[νt]
ν ≃ Ce4t

|vt,xn| ≤ C(1 + 1
ν
+ η

4ν2
)[νt]

= C(1 + (
1+ η

4ν

ν
)[νt])

≤ C(1 + ( 2
ν
)[νt])

≃ Ce2t

with η ≤ 4ν, as required. A similar argument works for the odd
derivatives {uxn , utxn}, with n ∈ N odd.

�
Lemma 0.3. Suppose that u satisfies the nonstandard equation in

Lemma 0.2, with the extra assumption that for finite (i, j) ∈ N 2, ∂i(u0)
∂xi

and
∂j(u0

t )

∂xj are bounded, for finite (x, t) ∈ Rη×Tν. Then, for such (x, t) ;

u(x, t) ≃ 1
2
(u(x+ t, 0) + u(x− t, 0) +

∫
[x−t,x+t]

u0
t (w)dµη(w)

In particularly, if F satisfies the standard wave equation on R2
, with

the property that F 0, F 0
t ⊂ C∞(R), then if u satisfies the nonstandard

equation with initial conditions {(F 0)η, (F
0
t )η}, we have that u is S-

continuous for finite (x, t) ∈ Rη × Tν, and;
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◦u(x, t) = F (◦x, ◦t)

Proof. By the previous lemma, all finite derivatives of the form uxn and
utxn are uniformly bounded. Factoring the equation utt − uxx = 0, we
obtain that;

( ∂
∂t
+ ∂

∂x
)( ∂

∂t
− ∂

∂x
)u = 0

for (x, t) ∈ Rη × (Tν \ ν2−1
ν

, ν
2−2
ν

). Setting v = ut − ux, with (x, t) ∈
Rη × (Tν \ ν2−1

ν
, ν

2−2
ν

), we have that;

vt + vx = 0

v0 = u0
t − u0

x, (∗ ∗ ∗)

the first line of (∗ ∗ ∗) holding when (x, t) ∈ Rη × (Tν \ ν2−1
ν

, ν
2−2
ν

).

Given finite (x, t), we define Hx,t : Tξ → ∗R by ;

Hx,t(s) = v(x− [sξ]
ξ
, t− [sξ]

ξ
) = v(x− [sξ]

ξ
, [tν]

ν
− [sξ]

ξ
)

Using (∗ ∗ ∗) and the following Lemmas, 0.7 and 0.8, for finite

{x0, t0, s}, with x(s) = − [sξ]
ξ

and y(s) = − [sξ]
ξ
, so that xD(s) = yD(s) =

−1, we have that;

dH
dt

s

x0,t0
≃ (− ∂v

∂x
− ∂v

∂t
)|x0−s,t0−s ≃ 0

so that;

(ut − ux)(x0, t0) = v(x0, t0) = Hx0,t0(0) ≃ Hx0,t0(s0)

(where s0 is chosen so that [s0ξ]
ξ

= [t1ν]
ν

≃ [t0ν]
ν
; writing ξ = ν

κ
, with κ

infinite, we have [s0ξ]
ξ

= [t0ν]
ν
, iff

κ[
s0ν
κ

]

ν
= [t0ν]

ν
iff [ s0ν

κ
] = [t0ν]

κ
. Replacing

[t0ν] with [t0ν] + r, where 0 ≤ r < κ, and [t1ν] = [t0ν] + r, so that

κ|[t1ν] and, as | rν | < |κ
ν
| = |1

ξ
| ≃ 0, we must have [t0ν]

ν
≃ [t1ν]

ν
. We can

then solve [ s0ν
κ
] = [t1ν]

κ
, taking [t1ν]

ν
≤ s0 <

[t1ν]+κ
ν

)

= v(x0 − [s0ξ]
ξ
, [t0ν]

ν
− [s0ξ]

ξ
)

≃ v(x0 − [s0ξ]
ξ
, [t1ν]

ν
− [s0ξ]

ξ
)
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= v(x0 − [s0ξ]
ξ
, 0)

= v(x0 − [t1ν]
ν
, 0)

≃ v(x0 − [t0ν]
ν
, 0)

Here, we have used the facts that v is S-continuous in t, and v0 is
S-continuous in x, consequent on (ut − ux) S-continuous in t or utt

and utx bounded, and (ut − ux)
0 is S-continuous in x or u0

tx and u0
xx

bounded. These results follow as utt = uxx, both utx = uxt and uxx are
bounded by the result of the previous lemma.

= ut − ux(x0 − [t0ν]
ν
, 0)

= u0
t (x0 − [t0ν]

ν
)− u0

x(x0 − [t0ν]
ν
), (∗ ∗ ∗∗)

Rewriting (∗ ∗ ∗∗) as (ut − ux)(x
′, t′) ≃ h(x′, t′)

with h(x′, t′) = u0
t (x

′ − [t′ν]
ν
)− u0

x(x
′ − [t′ν]

ν
)

define Θx′,t′ : Tξ → ∗R by ;

Θx′,t′(s) = u(x′ + [sξ]
ξ
, t′ − [sξ]

ξ
)

Then, using (∗ ∗ ∗∗) ,the definition of h, and Lemmas 0.7 and 0.8

again, this time with x(s) = [sξ]
ξ
, so that xD(s) = 1 ;

dΘ
dt

s

x′,t′
≃ (∂u

∂x
− ∂u

∂t
)|
x′+ [sξ]

ξ
,t′− [sξ]

ξ

≃ (∂u
∂x

− ∂u
∂t
)|
x′+ [sν]

ν
,t′− [sν]

ν

(S-continuity of ux in x and ut in t, consequent on uxx and utt

bounded, follows from the previous lemma.)

≃ −h(x′ + [sν]
ν
, t′ − [sν]

ν
)

= −u0
t (x

′ + [sν]
ν

− [t′ν]−[sν]
ν

) + u0
x(x

′ + [sν]
ν

− [t′ν]−[sν]
ν

)

= −u0
t (x

′ + 2[sν]
ν

− [t′ν]
ν
) + u0

x(x
′ + 2[sν]

ν
− [t′ν]

ν
), (†)
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We have, as above, that;

Θx′,t′(0) = u(x′, t′)

Θx′,t′(t
′) ≃ u(x′ + [t′ν]

ν
, t′ − [t′ν]

ν
) = u(x′ + [t′ν]

ν
, 0), (∗ ∗ ∗ ∗ ∗)

Using Lemma 0.8, (∗ ∗ ∗ ∗ ∗) and (†), we obtain;

u(x′ + [t′ν]
ν
, 0)− u(x′, t′)

≃ Θx′,t′(t
′)−Θx′,t′(0)

=
∫
[0,

[t′ν]
ν

)
dΘ
dt

w

x′,t′
dµξ(w)

≃
∫
[0,

[t′ν]
ν

)
(−u0

t (x
′ + 2[sν]

ν
− [t′ν]

ν
) + u0

x(x
′ + 2[sν]

ν
− [t′ν]

ν
)dµξ(s)

so that, using Lemma 0.5 and Lemma 0.9;

u(x′, t′)

≃ u(x′ + [t′ν]
ν
, 0) +

∫
[0,

[t′ν]
ν

)
(u0

t (x
′ + 2[sν]

ν
− [t′ν]

ν
)dµξ(s)

−
∫
[0,

[t′ν]
ν

)
u0
x(x

′ + 2[sν]
ν

− [t′ν]
ν
)dµξ(s)

= u(x′ + [t′ν]
ν
, 0) +

∫
[0,

[t′ν]
ν

)
(u0

t (x
′ + 2[sξ]

ξ
− [t′ν]

ν
)dµξ(s)

−
∫
[0,

[t′ν]
ν

)
u0
x(x

′ + 2[sξ]
ξ

− [t′ν]
ν
)dµξ(s)

= u(x′ + [t′ν]
ν
, 0) +

∫
[0,

[t′ν]
ν

)
(u0

t (x
′ + 2[sξ]

ξ
− [t′ν]

ν
)dµξ(s)

−
∫
[0,

[t′ν]
ν

)
u0
x(x

′ + 2[sξ]
ξ

− [t′ν]
ν
)dµξ(s)

Now let s = hρ(u) =
[ρu]
ρ

+
[t′ν]
ν

−x′

2
, where ξ = κρ and κ ∈ ∗N is infinite,

then, letting w1,ξ(s) = u0
t (x

′+2 [sξ]
ξ
− [t′ν]

ν
), we have, by refinement, that;

(w1,ξ ◦ hρ)(u) = u0
t (x

′ + 2(
[ρu]
ρ

+
[t′ν]
ν

−x′

2
)− [t′ν]

ν
) = u0

t (
[ρu]
ρ
)

hD
ρ (u) =

1
2

and, using Lemma 0.9;
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[0,

[t′ν]
ν

)
(u0

t (x
′ + 2[sξ]

ξ
− [t′ν]

ν
)dµξ(s) =

1
2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
t (

[ρu]
ρ
)dµρ(u)

−
∫
[0,

[t′ν]
ν

)
u0
x(x

′+2[sξ]
ξ
− [t′ν]

ν
)dµξ(s) = −1

2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
x(

[ρu]
ρ
)dµρ(u)

so that;

u(x′, t′) ≃ u(x′ + [t′ν]
ν
, 0) + 1

2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
t (

[ρu]
ρ
)dµρ(u)

−1
2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
x(

[ρu]
ρ
)dµρ(u), (∗ ∗ ∗∗)

Using Lemma 0.10, we have that;

1
2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
x(

[ρu]
ρ
)dµρ(u)

≃ 1
2
(u0(x′ + [t′ν]

ν
)− u0(x′ − [t′ν]

ν
)), (∗ ∗ ∗ ∗ ∗)

Combining (∗ ∗ ∗∗) and (∗ ∗ ∗ ∗ ∗), we obtain that;

u(x′, t′) ≃ u(x′ + [t′ν]
ν
, 0)− 1

2
(u0(x′ + [t′ν]

ν
)− u0(x′ − [t′ν]

ν
))

+1
2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
t (

[ρu]
ρ
)dµρ(u)

= 1
2
(u0(x′ + [t′ν]

ν
)− u0(x′ − [t′ν]

ν
))

+1
2

∫
[x′− [t′ν]

ν
,x′+ [t′ν]

ν
)
u0
t (

[ρu]
ρ
)dµρ(u)

≃ 1
2
(u0(x′ + t′)− u0(x′ − t′)

+1
2

∫
[x′−t′,x′+t′

u0
t (w)dµη(w)

as required.
�

Remarks 0.4. For finite values, this result matches d’Alembert’s so-
lution from the standard case, so the nonstandard wave equation is a
reasonable model for pursuing a diffusion approach. This would help to
understand photon paths, for example, in Maxwell’s equation for zero
charge and density.

Lemma 0.5. Let F : ∗R → ∗R be internal, and η = κξ with κ ∈ ∗N ,
then;
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((F )η)ξ = (F )ξ

Proof. Let x = i
ξ
, with i ∈ ∗Z, then;

((F )η)ξ(x) = Fη(x) = Fη(
i
ξ
) = Fη(

iκ
η
)

= F ( iκ
η
) = F ( i

ξ
) = (F )ξ(

i
ξ
) = (F )ξ(x)

As both ((F )η)ξ and (F )ξ are µξ measurable, this proves the result.
�

Lemma 0.6. Let f ∈ V (Rη), with fD S-continuous and bounded, then
if ϵ ≃ 0, with ϵ

√
η infinite, we have that;

fDϵ ≃ fD

Proof. Let ϵ = n√
η
+ δ, with 0 ≤ δ < 1√

η
, and n ∈ ∗N infinite, then;

fDϵ(x) = f(x+ϵ)−f(x)
ϵ

=
f(x+ n√

η
)−f(x)

n√
η
+δ

, as f ∈ V (Rη)

Without loss of generality, we have that;

n
n+1

f(x+ n√
η
)−f(x)

n√
η

<
f(x+ n√

η
)−f(x)

n√
η
+δ

<
f(x+ n√

η
)−f(x)

n√
η

and;

f(x+ n√
η
)−f(x)

n√
η

= 1
n
∗ ∑n−1

k=0

f(x+ k+1√
η
)−f(x+ k√

η
)

1√
η

= 1
n
∗ ∑n−1

k=0f
D(x+ k√

η
)

≃ fD(x)

as fD is S-continuous, so that;

fD(x) ≃ n
n+1

fD(x) < fDϵ(x) < fD(x)

as n
n+1

≃ 1 and fD(x) is finite, giving that fD(x) ≃ fDϵ(x)
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�

Lemma 0.7. Let f ∈ V (Rη × Tν), x : Tξ → Rη, y : Tξ → Tν, be
measurable, with the forward derivatives {fD

x , fD
xy, f

D
t , xD, yD} bounded.

Then, if H ∈ V (Tν), with H(s) = f(x(s), y(s)), then;

HD(s) ≃ fD
x (x(s))xD(s) + fD

y (y(s))yD(s)

when D relative to ξ is taken so that
√
η

ξ
and ν

ξ
are infinite.

Proof. We have that;

HD(s) = ν(H(s+ 1
ξ
)−H(s))

= ν(f(x(s+ 1
ξ
), y(s+ 1

ξ
))− f(x(s), y(s)))

= ν(f(x(s+ 1
ξ
), y(s+ 1

ξ
))− f(x(s), y(s+ 1

ξ
))

+ν(f(x(s), y(s+ 1
ξ
))− f(x(s), y(s)))

=
(f(x(s+ 1

ξ
),y(s+ 1

ξ
))−f(x(s),y(s+ 1

ξ
)))

x(s+ 1
ξ
)−x(s)

ξ(x(s+ 1
ξ
)− x(s))

+
(f(x(s),y(s+ 1

ξ
))−f(x(s),y(s)))

y(s+ 1
ξ
)−y(s)

ξ(y(s+ 1
ξ
)− y(s))

=
(f(x(s+ 1

ξ
),y(s+ 1

ξ
))−f(x(s),y(s+ 1

ξ
)))

x(s+ 1
ξ
)−x(s)

xD(s) +
(f(x(s),y(s+ 1

ξ
))−f(x(s),y(s)))

y(s+ 1
ξ
)−y(s)

yD(s)

=
(f(x(s)+ϵ,y(s+ 1

ξ
))−f(x(s),y(s+ 1

ξ
)))

ϵ
xD(s) + (f(x(s),y(s)+δ)−f(x(s),y(s)))

δ
yD(s)

= fDϵ
x (x(s), y(s+ 1

ξ
))xD(s) + fDδ

y (x(s), y(s))yD(s)

with ϵ = x(s+ 1
ξ
)− x(s) ≃ 0 and δ = y(s+ 1

ξ
)− y(s) ≃ 0, as xD and

yD are bounded.

We have xD(s) = ξϵ = C, yD(s) = δϵ = D, with C,D finite, so that

ϵ
√
η =

C
√
η

ξ
and δν = Dν

ϵ
are infinite, by the hypotheses. Applying the

result of Lemma 0.6, we have fDϵ
x ≃ fD

x , and fDδ
y ≃ fD

y , so;

HD(s) ≃ fD
x (x(s), y(s+ 1

ξ
))xD(s) + fD

y (x(s), y(s))yD(s)

As fD
xy is bounded (finite position), fD

x is S-continuous in y, so that;
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HD(s) ≃ fD
x (x(s), y(s))xD(s) + fD

y (x(s), y(s))yD(s)

as required.
�

Lemma 0.8. If H ∈ V (Tξ) has the property that;

HD(s) ≃ 0

for s ∈ Tξ with s finite, then;

H(0) ≃ H(s)

for s ∈ Tξ with s finite.

If G,R ⊂ V (Tξ) have the property that;

GD(s) ≃ R(s)

for s ∈ Tξ with s finite, then;

G(s) ≃ G(0) +
∫
[0,

[sξ]
ξ

)
R(w)dµξ(w)

for s ∈ Tξ with s finite.

Proof. Using the definition of D, we have that;

|H(s)−H(0)| = |1
ξ
∗∑[sξ]−1

k=0 ξ(H(k+1
ξ
)−H(k

ξ
))|

= |
∫
[0,

[sξ]
ξ

)
HD(w)dµξ(w)|

≤
∫
[0,

[sξ]
ξ

)
|HD(w)|dµξ(w)

≤ ϵ
∫
[0,

[sξ]
ξ

)
dµξ(w)

≤ ϵ [sξ]
ξ

where ϵ ∈ R>0 is arbitrary. As [sξ]
ξ

is finite, we conclude that;

|H(s)−H(0)| ≃ 0
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as required for the first result. For the second result;

|G(s)−G(0)−
∫
[0,

[sξ]
ξ

)
R(w)dµξ(w)|

= |1
ξ
∗∑[sξ]−1

k=0 ξ(H(k+1
ξ
)−H(k

ξ
))−

∫
[0,

[sξ]
ξ

)
R(w)dµξ(w)|

= |
∫
[0,

[sξ]
ξ

)
HD(w)dµξ(w)−

∫
[0,

[sξ]
ξ

)
R(w)dµξ(w)|

≤
∫
[0,

[sξ]
ξ

)
|(HD −R)(w)|dµξ(w)

≤ ϵ
∫
[0,

[sξ]
ξ

)
dµξ(w)

≤ ϵ [sξ]
ξ

where ϵ ∈ R>0 is arbitrary. As [sξ]
ξ

is finite, we conclude that;

|G(s)−G(0)−
∫
[0,

[sξ]
ξ

)
R(w)dµξ(w)| ≃ 0 as required.

�

Lemma 0.9. Integration by Substitution Suppose {a, b} ⊂ R, and let
f ∈ C([a, b]) be continuous with corresponding fη ∈ V (Rη ∩ ∗[a, b)),
suppose that h : [h−1(a), h−1(b)] → [a, b] is continuous and increasing,
so invertible, with corresponding hξ ∈ V (Rξ ∩ ∗[h−1(a), h−1(b))), and
forward derivative hD

ξ , then;∫
Rη∩∗[a,b)

fη(x)dµη(x) ≃
∫
Rξ∩∗[h−1(a),h−1(b))

(fη ◦ hξ)(y)h
D
ξ (y)dµξ(y)

provided η
ξ
is infinite.

Proof. For bounded f ∈ V (Rη∩∗[a, b)), we define the measure µη,l,f by;

µη,l,f ([
i
ξ
, i+1

ξ
)) = (fη ◦ hξ)(

i
ξ
)µη[

[ηhξ(
i
ξ
)]

η
,
[ηhξ(

i+1
ξ

)]

η
)

and extend linearly to ∗-finite unions of intervals in the correspond-

ing ∗-algebra B. We have that µη[
[ηhξ(

i
ξ
)]

η
,
[ηhξ(

i+1
ξ

)]

η
)

=
[ηhξ(

i+1
ξ

)]

η
− [ηhξ(

i
ξ
)]

η

= (
hξ(

i+1
ξ

)−δ

η
)− (

hξ(
i
ξ
)−δ′

η
)
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= (
hξ(

i+1
ξ

)−hξ(
i
ξ
)−δ′′

η
)

where 0 ≤ δ < 1, 0 ≤ δ′ < 1 and 0 ≤ |δ′′| < 1.

so that;

|µη[
[ηhξ(

i
ξ
)]

η
,
[ηhξ(

i+1
ξ

)]

η
)− (hξ(

i+1
ξ
)− hξ(

i
ξ
))| ≤ | δ′′

η
| ≤ 1

η

and;

µη[
[ηhη(

i
η
)]

η
,
[ηhη(

i+1
η

)]

η
) ≃ (hη(

i+1
η
)− hη(

i
η
))

and, as fη is bounded, with |fη| ≤ C;

|fη(hξ(
i
ξ
))µη[

[ηhξ(
i
ξ
)]

η
,
[ηhξ(

i+1
ξ

)]

η
)− fη(hξ(

i
ξ
))(hξ(

i+1
ξ
)− hξ(

i
ξ
))|

≤ |Cδ′′

η
|

≤ C
η
≃ 0, (†)

In particularly, letting κ = [ξg−1(b)]− [ξg−1(a)], we have that Cκ
η

≃ 0

if η
ξ
is infinite, (††) ;

Then, using (†);
fη(hξ(

i
ξ
))µη[

[ηhξ(
i
ξ
)]

η
,
[ηhξ(

i+1
ξ

)]

η
)

≃ fη(hξ(
i
ξ
))(hξ(

i+1
ξ
)− hξ(

i
ξ
))

= 1
ξ
fη(hξ(

i
ξ
))hD

xi(
i
ξ
), (∗)

We claim that for f as in the statement of the lemma;∫
[a,b)

fηdµη =
∫
[h−1(a),h−1(b))

dµη,l,f (†), in which case, we obtain the

result, as, using (∗) and (††);∫
[a,b)

fη(x)dµη(x)

=
∫
[h−1(a),h−1(b))

dµη,l,f
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= ∗ ∑
[ξh−1(a)]≤i≤[ξh−1(b)]µη,l,f ([

i
ξ
, i+1

ξ
))

≃ ∗∑
[ξh−1(a)]≤i≤[ξh−1(b)]fη(hxi(

i
ξ
))1

ξ
hD
ξ (

i
ξ
)

= 1
ξ
∗∑

[ξh−1(a)]≤i≤[ξh−1(b)]fη(hξ(
i
ξ
))hD

ξ (
i
ξ
)

=
∫
[h−1(a),h−1(b))

fη(hξ(y)h
D
ξ (y)dµξ(y)

=
∫
[h−1(a),h−1(b))

(fη ◦ hξ)(y)h
D
ξ (y)dµξ(y)

In order to show (†), we first consider the case when g = χ(c,d) with
(c, d) ⊂ [a, b). Then, using the argument above and the fact that χ(c,d)

is bounded;∫
[h−1(a),h−1(b))

dµη,l,gη

≃ ∗∑
[ηh−1(a)]≤i≤[ηh−1(b)](f ◦ hξ)(

i
ξ
)(hξ(

i+1
ξ
)− hξ(

i
ξ
))

= ∗ ∑
rc≤i≤rd

(hξ(
i+1
ξ
)− hξ(

i
ξ
))

= hξ(
rd+1
ξ

)− hξ(
rc
ξ
)

≃ (d− c)

≃
∫
[a,b)

χ(c,d)dµη

=
∫
[a,b)

fdµη.

as h is continuous, where rc = min({i : hξ(
i
ξ
) ≥ c}), rd = max({i :

hξ(
i
ξ
) ≤ d}),

By a similar argument, we can show that, if fr = λ1χ(c1,d1)+. . . λrχ(cr,dr)

is a finite combination of characteristic functions, then;∫
[h−1(a),h−1(b))

dµη,l,fr,η ≃
∫
[a,b)

fr,ηdµη (♯)

Now, considering the case when f is continuous on [a, b], we can find
a sequence {fr : r ∈ N}, such that limr→∞fr = f pointwise, and each
fr has the property (♯).

We claim first that limr→∞
◦(
∫
[a,b)

fr,ηdµη) =
◦(
∫
[a,b)

fηdµη), (♯♯). This

follows as;
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limr→∞
◦(
∫
[a,b)

fr,ηdµη)

= limr→∞
∫
[a,b)

◦fr,ηdL(µη)

= limr→∞
∫
[a,b)

frdµ

=
∫
[a,b)

fdµ

=
∫
[a,b)

◦fηdL(µη)

= ◦(
∫
[a,b)

fηdµη)

using the definition of the Riemann integral, together with the facts
that fη and {fr,η : r ∈ N}, are S-continuous, S-integrable, and piece-
wise S-continuous, S-integrable respectively.

We claim, secondly, that;

limr→∞
◦(
∫
[h−1(a),h−1(b))

dµη,l,fr,η) =
◦(
∫
[h−1(a),h−1(b))

dµη,l,fη), (♯♯♯)

This follows, by observing that;

|
∫
[h−1(a),h−1(b))

dµη,l,fr,η −
∫
[h−1(a),h−1(b))

dµη,l,fη |

= |∗
∑

[ξh−1(a)]≤i≤[ξh−1(b)](µη,l,fr,η([
i
ξ
, i+1

ξ
))− µη,l,fη([

i
ξ
, i+1

ξ
)))

≤ ∗∑
[ξh−1(a)]≤i≤[ξh−1(b)]|fr,η ◦ hξ(

i
ξ
)− fη ◦ hξ(

i
ξ
)||hξ(

i+1
ξ
)− hξ(

i
ξ
)|

=
∫
[h−1(a),h−1(b))

dµη,l,|fη−fr,η|

≤ Cϵr

when |fη − fr,η| ≤ ϵr, and C ≃ b − a, where limr→∞ ϵr = 0 if we
assume uniform convergence. Now define U(sη) =

∫
[a,b)

sηdµη, and

T (sη) =
∫
[h−1(a),h−1(b))

dµη,l,sη . Then, we have, using (♯), (♯♯), (♯♯♯), that;

|U(fη)− T (fη)|

= |U(fη)− U(fr,η) + U(fr,η)− T (fr,η) + T (fr,η)− T (fη)|

≤ |U(fη)− U(fr,η)|+ |U(fr,η)− T (fr,η)|+ |T (fr,η)− T (fη)|
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≤ ϵ
3
+ ϵ

3
+ ϵ

3
= ϵ

As ϵ was arbitrary, we obtain the result.
�

Lemma 0.10. Let {u, uD, uD2} ⊂ V (Tν) be bounded, and let ν = κξ,
with κ ∈ ∗N and κ infinite. Let (uD)ξ ∈ V (Tξ) be the measurable coun-
terpart of uD. Then, if {a, b} ⊂ Tξ are finite ;∫

(a,b)
(uD)ξ(x)dµξ)(x) ≃ u(b)− u(a)

Proof. For 0 ≤ j ≤ κ − 1, let (uD)ξ,j(x) = ν(u(x + j+1
ν
) − u(x + j

ν
)).

We claim that for 0 ≤ j ≤ κ−2, (uD)ξ,j ≃ (uD)ξ,j+1, (†). We have that;

|(uD)ξ,j+1 − (uD)ξ,j|

= |ν(u(x+ j+2
ν
)− u(x+ j+1

ν
))− ν(u(x+ j+1

ν
)− u(x+ j

ν
))|

= |ν(u(x+ j+2
ν
)− 2u(x+ j+1

ν
) + u(x+ j

ν
))|

= 1
ν
|ν2(u(x+ j+2

ν
)− 2u(x+ j+1

ν
) + u(x+ j

ν
))|

= 1
ν
|(uD2

(x+ j
ν
))|

≤ C
ν

with C ∈ R. By the triangle inequality, we have that, for 0 ≤ j1 ≤
j2 ≤ κ− 1;

|(uD)ξ,j2 − (uD)ξ,j1 | ≤ Cκ
ν

= C
ξ
≃ 0

It follow that;

(uD)ξ ≃ 1
κ
∗∑κ−1

j=0 (u
D)ξ,j

and;∫
(a,b)

(uD)ξ(x)dµξ)(x)

≃
∫
(a,b)

1
κ
∗ ∑

0≤j≤κ−1(u
D)ξ,j
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= 1
κξ

∗∑[aξ] ≤ i ≤ [bξ]∗
∑

0≤j≤κ−1ν(u(
i
ξ
+ j+1

ν
)− u( i

ξ
+ j

ν
))

= ν
κξ
(u( [bξ]+1

ξ
)− u(( [aξ]

ξ
)))

= u( [bξ]+1
ξ

)− u(( [aξ]
ξ
))

≃ u(b)− u(a)

as u is S-continuous.
�
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