A NONSTANDARD SOLUTION TO THE WAVE EQUATION

TRISTRAM DE PIRO

ABSTRACT. We follow d'Alembert's method for solving the standard wave equation, in the nonstandard case, and compare the solutions.

Definition 0.1. Given $u \in V(\overline{\mathcal{R}_{\eta}} \times \overline{\mathcal{T}_{\nu}})$, we let;

$$u_t(y,s) = \nu(u(y,s+\frac{1}{\nu}) - u(y,s)), \text{ for } (y,s) \in \overline{\mathcal{R}_{\eta}} \times (\overline{\mathcal{T}_{\nu}} \setminus \frac{\nu^2 - 1}{\nu})$$
$$u_x(y,s) = \frac{\sqrt{\eta}}{2}(u(y+\frac{1}{\sqrt{\eta}},s) - u(y-\frac{1}{\sqrt{\eta}},s)), \text{ for } (y,s) \in \overline{\mathcal{R}_{\eta}} \times \overline{\mathcal{T}_{\nu}}$$

We define the nonstandard unconvoluted wave equation, on $\overline{\mathcal{R}_{\eta}} \times (\overline{\mathcal{T}_{\nu}} \setminus \frac{\nu^2 - 1}{\nu}, \frac{\nu^2 - 2}{\nu})$ by;

$$u_{tt} - u_{xx} = 0$$

Lemma 0.2. Given initial conditions $\{f, g\} \subset V(\overline{\mathcal{R}_{\eta}})$ there exists a unique $u \in V(\overline{\mathcal{R}_{\eta}} \times \overline{\mathcal{T}_{\nu}})$ solving the nonstandard unconvoluted wave equation, such that $u^{0} = f$, and $u_{t}^{0} = g$, and;

$$\begin{aligned} u(x,t+\frac{2}{\nu}) &= 2u(x,t+\frac{1}{\nu}) + \frac{\eta}{4\nu^2}u(x+\frac{2}{\sqrt{\eta}},t) - (1+\frac{\eta}{2\nu^2})u(x,t) \\ &+ \frac{\eta}{4\nu^2}u(x-\frac{2}{\sqrt{\eta}},t), \ (*) \\ for \ (x,t) &\in \overline{\mathcal{R}_{\eta}} \times (\overline{\mathcal{T}_{\nu}} \setminus \frac{\nu^2-1}{\nu}, \frac{\nu^2-2}{\nu}) \end{aligned}$$

Moreover, if the standard initial conditions $\{u^0, u_t^0\}$ are given with $\frac{\partial^i(u_t^0)}{\partial x^i} \leq D$ and $\frac{\partial^j(u_t^0)}{\partial x^j} \leq D$, uniformly, for finite $(i, j) \in \mathcal{N}^2$, then for $(t_0, x_0) \in \overline{\mathcal{T}_{\nu}} \times \overline{\mathcal{R}_{\eta}}$, with t_0 finite, and the choice $\eta \leq 4\nu$, $u_{txx}|_{t_0, x_0}$ and $u_{xx}|_{t_0, x_0}$ are bounded, for the nonstandard equation generated by initial conditions $\{v, v_t\}$, with $v^0 = (u^0)_{\eta}$, $v_t^0 = (u_t^0)_{\eta}$.

Proof. Using the definition of the derivatives, the equation in Definition 0.1, and rearranging, we obtain the defining schema for u given in

(*). We are free to choose the values for the first two time steps, by setting;

$$u(x,0) = f(x)$$

$$u_t(x,0) = \nu(u(x,\frac{1}{\nu}) - u(x,0)) = g(x)$$

First, observe, using Taylors' Theorem, that $v_{x^n}^0$ and $v_{tx^n}^0$ are bounded. Suppose inductively, that there exists a constant $C_i \in \mathcal{R}$, for $\frac{i}{\nu}$ finite, with;

$$max(\{u_{\frac{j}{\nu},x^{n}}, u_{\frac{k}{\nu}}, x^{n}t : 0 \le j \le i, 0 \le k \le i-1\}) \le C_{i}$$

for *n* even, where v_{x^n} denotes the n'th derivative of *v* with respect to *x*.

We have that;

$$\begin{aligned} v(x, \frac{i+1}{\nu}) &= 2v(x, \frac{i}{\nu}) + \frac{\eta}{4\nu^2}v(x + \frac{2}{\sqrt{\eta}}, \frac{i-1}{\nu}) - (1 + \frac{\eta}{2\nu^2})v(x, \frac{i-1}{\nu}) \\ &+ \frac{\eta}{4\nu^2}v(x - \frac{2}{\sqrt{\eta}}, \frac{i-1}{\nu}) \end{aligned}$$

and taking the n'th even derivative with respect to x;

$$v_{x^{n}}(x,\frac{i+1}{\nu}) = 2v_{x^{n}}(x,\frac{i}{\nu}) + \frac{\eta}{4\nu^{2}}v_{x^{n}}(x+\frac{2}{\sqrt{\eta}},\frac{i-1}{\nu}) - (1+\frac{\eta}{2\nu^{2}})v_{x^{n}}(x,\frac{i-1}{\nu}) + \frac{\eta}{4\nu^{2}}v_{x^{n}}(x-\frac{2}{\sqrt{\eta}},\frac{i-1}{\nu})$$

Abbreviating notation;

$$\begin{split} v_{i,tx^n} &= \nu(v_{i+1,x^n} - v_{i,x^n}) = \nu(2v_{i,x^n} - v_{i-1,x^n} + \frac{\eta}{4\nu^2}(v_{i-1,x^n}^{lsh^2} - 2v_{i-1,x^n} + v_{i-1,x^n}^{rsh^2}) - v_{i,x^n}) \\ \nu(v_{i,x^n} - v_{i-1,x^n}) &+ \frac{\eta}{4\nu}(v_{i-1,x^n}^{lsh^2} - 2v_{i-1,x^n} + v_{i-1,x^n}^{rsh^2})) \\ &= v_{i-1,tx^n} + \frac{1}{4\nu}v_{i-1,x^{n+2}} \\ |v_{i,tx^n}| &\leq |v_{i-1,tx^n}| + \frac{1}{4\nu}|v_{i-1,x^{n+2}}| \\ &\leq C + \frac{1}{4\nu}C = C(1 + \frac{1}{4\nu}) \end{split}$$

 $\mathbf{2}$

$$\begin{aligned} v_{i+1,x^n} &= 2v_{i,x^n} + \frac{\eta}{4\nu^2} (v_{i-1,x^n}^{lsh^2} - (1 + \frac{\eta}{2\nu^2}) v_{i-1,x^n} + \frac{\eta}{4\nu^2} v_{i-1,x^n}^{rsh^2}) \\ &= v_{i,x^n} - v_{i-1,x^n} + v_{i,x^n} + \frac{\eta}{4\nu^2} (v_{i-1,x^n}^{lsh^2} - 2v_{i-1,x^n} + v_{i-1,x^n}^{rsh^2}) \\ &= \frac{v_{i-1,tx^n}}{\nu} + v_{i,x^n} + \frac{\eta}{4\nu^2} (v_{i-1,x^{n+2}}) \\ &|v_{i+1,x^n}| \le \frac{C}{\nu} + C(1 + \frac{\eta}{4\nu^2}) \end{aligned}$$

Iterating, we obtain that;

for finite t;

$$\begin{aligned} |v_{t,tx^{n}}| &\leq C(1 + \frac{1}{4\nu})^{[\nu t]} \\ &= C(1 + \frac{1}{4\nu})^{\nu \frac{[\nu t]}{\nu}} \\ &\simeq Ce^{4\frac{[\nu t]}{\nu}} \simeq Ce^{4t} \\ |v_{t,x^{n}}| &\leq C(1 + \frac{1}{\nu} + \frac{\eta}{4\nu^{2}})^{[\nu t]} \\ &= C(1 + (\frac{1 + \frac{\eta}{4\nu}}{\nu})^{[\nu t]}) \\ &\leq C(1 + (\frac{2}{\nu})^{[\nu t]}) \\ &\simeq Ce^{2t} \end{aligned}$$

with $\eta \leq 4\nu$, as required. A similar argument works for the odd derivatives $\{u_{x^n}, u_{tx^n}\}$, with $n \in \mathcal{N}$ odd.

Lemma 0.3. Suppose that u satisfies the nonstandard equation in Lemma 0.2, with the extra assumption that for finite $(i, j) \in \mathcal{N}^2$, $\frac{\partial^i(u^0)}{\partial x^i}$ and $\frac{\partial^j(u^0_t)}{\partial x^j}$ are bounded, for finite $(x, t) \in \overline{\mathcal{R}_{\eta}} \times \overline{\mathcal{T}_{\nu}}$. Then, for such (x, t);

$$u(x,t) \simeq \frac{1}{2}(u(x+t,0) + u(x-t,0) + \int_{[x-t,x+t]} u_t^0(w) d\mu_\eta(w)$$

In particularly, if F satisfies the standard wave equation on $\overline{\mathcal{R}}^2$, with the property that $F^0, F_t^0 \subset C^{\infty}(\mathcal{R})$, then if u satisfies the nonstandard equation with initial conditions $\{(F^0)_{\eta}, (F_t^0)_{\eta}\}$, we have that u is Scontinuous for finite $(x, t) \in \overline{\mathcal{R}}_{\eta} \times \overline{\mathcal{T}}_{\nu}$, and;

TRISTRAM DE PIRO

$$^{\circ}u(x,t) = F(^{\circ}x,^{\circ}t)$$

Proof. By the previous lemma, all finite derivatives of the form u_{x^n} and u_{tx^n} are uniformly bounded. Factoring the equation $u_{tt} - u_{xx} = 0$, we obtain that;

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right)u = 0$$

for $(x,t) \in \overline{\mathcal{R}_{\eta}} \times (\overline{\mathcal{T}_{\nu}} \setminus \frac{\nu^2 - 1}{\nu}, \frac{\nu^2 - 2}{\nu})$. Setting $v = u_t - u_x$, with $(x,t) \in \overline{\mathcal{R}_{\eta}} \times (\overline{\mathcal{T}_{\nu}} \setminus \frac{\nu^2 - 1}{\nu}, \frac{\nu^2 - 2}{\nu})$, we have that;

$$v_t + v_x = 0$$

 $v^0 = u_t^0 - u_x^0, (***)$

the first line of (* * *) holding when $(x,t) \in \overline{\mathcal{R}_{\eta}} \times (\overline{\mathcal{T}_{\nu}} \setminus \frac{\nu^2 - 1}{\nu}, \frac{\nu^2 - 2}{\nu})$. Given finite (x,t), we define $H_{x,t} : \overline{\mathcal{T}_{\xi}} \to {}^*\mathcal{R}$ by ;

$$H_{x,t}(s) = v(x - \frac{[s\xi]}{\xi}, t - \frac{[s\xi]}{\xi}) = v(x - \frac{[s\xi]}{\xi}, \frac{[t\nu]}{\nu} - \frac{[s\xi]}{\xi})$$

Using (* * *) and the following Lemmas, 0.7 and 0.8, for finite $\{x_0, t_0, s\}$, with $x(s) = -\frac{[s\xi]}{\xi}$ and $y(s) = -\frac{[s\xi]}{\xi}$, so that $x^D(s) = y^D(s) = -1$, we have that;

$$\frac{dH^s}{dt}_{x_0,t_0} \simeq \left(-\frac{\partial v}{\partial x} - \frac{\partial v}{\partial t}\right)|_{x_0 - s, t_0 - s} \simeq 0$$

so that;

$$(u_t - u_x)(x_0, t_0) = v(x_0, t_0) = H_{x_0, t_0}(0) \simeq H_{x_0, t_0}(s_0)$$

(where s_0 is chosen so that $\frac{[s_0\xi]}{\xi} = \frac{[t_1\nu]}{\nu} \simeq \frac{[t_0\nu]}{\nu}$; writing $\xi = \frac{\nu}{\kappa}$, with κ infinite, we have $\frac{[s_0\xi]}{\xi} = \frac{[t_0\nu]}{\nu}$, iff $\frac{\kappa[\frac{s_0\nu}{\kappa}]}{\nu} = \frac{[t_0\nu]}{\nu}$ iff $[\frac{s_0\nu}{\kappa}] = \frac{[t_0\nu]}{\kappa}$. Replacing $[t_0\nu]$ with $[t_0\nu] + r$, where $0 \le r < \kappa$, and $[t_1\nu] = [t_0\nu] + r$, so that $\kappa|[t_1\nu]$ and, as $|\frac{r}{\nu}| < |\frac{\kappa}{\nu}| = |\frac{1}{\xi}| \simeq 0$, we must have $\frac{[t_0\nu]}{\nu} \simeq \frac{[t_1\nu]}{\nu}$. We can then solve $[\frac{s_0\nu}{\kappa}] = \frac{[t_1\nu]}{\kappa}$, taking $\frac{[t_1\nu]}{\nu} \le s_0 < \frac{[t_1\nu]+\kappa}{\nu}$)

$$= v(x_0 - \frac{[s_0\xi]}{\xi}, \frac{[t_0\nu]}{\nu} - \frac{[s_0\xi]}{\xi})$$
$$\simeq v(x_0 - \frac{[s_0\xi]}{\xi}, \frac{[t_1\nu]}{\nu} - \frac{[s_0\xi]}{\xi})$$

$$= v(x_0 - \frac{[s_0\xi]}{\xi}, 0)$$
$$= v(x_0 - \frac{[t_1\nu]}{\nu}, 0)$$
$$\simeq v(x_0 - \frac{[t_0\nu]}{\nu}, 0)$$

Here, we have used the facts that v is S-continuous in t, and v^0 is S-continuous in x, consequent on $(u_t - u_x)$ S-continuous in t or u_{tt} and u_{tx} bounded, and $(u_t - u_x)^0$ is S-continuous in x or u_{tx}^0 and u_{xx}^0 bounded. These results follow as $u_{tt} = u_{xx}$, both $u_{tx} = u_{xt}$ and u_{xx} are bounded by the result of the previous lemma.

$$= u_t - u_x (x_0 - \frac{[t_0\nu]}{\nu}, 0)$$

= $u_t^0 (x_0 - \frac{[t_0\nu]}{\nu}) - u_x^0 (x_0 - \frac{[t_0\nu]}{\nu}), (****)$
Rewriting $(****)$ as $(u_t - u_x)(x', t') \simeq h(x', t')$
with $h(x', t') = u_t^0 (x' - \frac{[t'\nu]}{\nu}) - u_x^0 (x' - \frac{[t'\nu]}{\nu})$
define $\Theta_{x',t'} : \overline{\mathcal{T}_{\xi}} \to {}^*\mathcal{R}$ by ;
 $\Theta_{x',t'}(s) = u(x' + \frac{[s\xi]}{\xi}, t' - \frac{[s\xi]}{\xi})$

Then, using (* * **) , the definition of h, and Lemmas 0.7 and 0.8 again, this time with $x(s)=\frac{[s\xi]}{\xi},$ so that $x^D(s)=1$;

$$\frac{d\Theta}{dt}\frac{s}{x',t'} \simeq \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial t}\right)\Big|_{x' + \frac{[s\xi]}{\xi},t' - \frac{[s\xi]}{\xi}}$$
$$\simeq \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial t}\right)\Big|_{x' + \frac{[s\nu]}{\nu},t' - \frac{[s\nu]}{\nu}}$$

(S-continuity of u_x in x and u_t in t, consequent on u_{xx} and u_{tt} bounded, follows from the previous lemma.)

$$\begin{split} &\simeq -h(x' + \frac{[s\nu]}{\nu}, t' - \frac{[s\nu]}{\nu}) \\ &= -u_t^0(x' + \frac{[s\nu]}{\nu} - \frac{[t'\nu] - [s\nu]}{\nu}) + u_x^0(x' + \frac{[s\nu]}{\nu} - \frac{[t'\nu] - [s\nu]}{\nu}) \\ &= -u_t^0(x' + \frac{2[s\nu]}{\nu} - \frac{[t'\nu]}{\nu}) + u_x^0(x' + \frac{2[s\nu]}{\nu} - \frac{[t'\nu]}{\nu}), (\dagger) \end{split}$$

We have, as above, that;

$$\begin{split} \Theta_{x',t'}(0) &= u(x',t') \\ \Theta_{x',t'}(t') &\simeq u(x' + \frac{[t'\nu]}{\nu}, t' - \frac{[t'\nu]}{\nu}) = u(x' + \frac{[t'\nu]}{\nu}, 0), \ (*****) \\ \text{Using Lemma 0.8, } (*****) \text{ and } (\dagger), \text{ we obtain;} \\ u(x' + \frac{[t'\nu]}{\nu}, 0) - u(x',t') \\ &\simeq \Theta_{x',t'}(t') - \Theta_{x',t'}(0) \\ &= \int_{[0,\frac{[t'\nu]}{\nu})} \frac{d\Theta^w}{dt} _{x',t'}^w d\mu_{\xi}(w) \\ &\simeq \int_{[0,\frac{[t'\nu]}{\nu})} (-u_t^0(x' + \frac{2[s\nu]}{\nu} - \frac{[t'\nu]}{\nu}) + u_x^0(x' + \frac{2[s\nu]}{\nu} - \frac{[t'\nu]}{\nu}) d\mu_{\xi}(s) \end{split}$$

so that, using Lemma 0.5 and Lemma 0.9;

$$\begin{split} u(x',t') \\ &\simeq u(x'+\frac{[t'\nu]}{\nu},0) + \int_{[0,\frac{[t'\nu]}{\nu})} (u_t^0(x'+\frac{2[s\nu]}{\nu}-\frac{[t'\nu]}{\nu})d\mu_{\xi}(s) \\ &- \int_{[0,\frac{[t'\nu]}{\nu})} u_x^0(x'+\frac{2[s\nu]}{\nu}-\frac{[t'\nu]}{\nu})d\mu_{\xi}(s) \\ &= u(x'+\frac{[t'\nu]}{\nu},0) + \int_{[0,\frac{[t'\nu]}{\nu})} (u_t^0(x'+\frac{2[s\xi]}{\xi}-\frac{[t'\nu]}{\nu})d\mu_{\xi}(s) \\ &- \int_{[0,\frac{[t'\nu]}{\nu})} u_x^0(x'+\frac{2[s\xi]}{\xi}-\frac{[t'\nu]}{\nu})d\mu_{\xi}(s) \\ &= u(x'+\frac{[t'\nu]}{\nu},0) + \int_{[0,\frac{[t'\nu]}{\nu})} (u_t^0(x'+\frac{2[s\xi]}{\xi}-\frac{[t'\nu]}{\nu})d\mu_{\xi}(s) \\ &- \int_{[0,\frac{[t'\nu]}{\nu})} u_x^0(x'+\frac{2[s\xi]}{\xi}-\frac{[t'\nu]}{\nu})d\mu_{\xi}(s) \end{split}$$

Now let $s = h_{\rho}(u) = \frac{\frac{[\rho u]}{\rho} + \frac{[t'\nu]}{\nu} - x'}{2}$, where $\xi = \kappa \rho$ and $\kappa \in {}^*\mathcal{N}$ is infinite, then, letting $w_{1,\xi}(s) = u_t^0(x' + 2\frac{[s\xi]}{\xi} - \frac{[t'\nu]}{\nu})$, we have, by refinement, that;

$$(w_{1,\xi} \circ h_{\rho})(u) = u_t^0 (x' + 2(\frac{\frac{[\rho u]}{\rho} + \frac{[t'\nu]}{\nu} - x'}{2}) - \frac{[t'\nu]}{\nu}) = u_t^0(\frac{[\rho u]}{\rho})$$
$$h_{\rho}^D(u) = \frac{1}{2}$$

and, using Lemma 0.9;

$$\begin{split} \int_{[0,\frac{[t'\nu]}{\nu})} (u_t^0(x' + \frac{2[s\xi]}{\xi} - \frac{[t'\nu]}{\nu}) d\mu_{\xi}(s) &= \frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu})} u_t^0(\frac{[\rho u]}{\rho}) d\mu_{\rho}(u) \\ &- \int_{[0,\frac{[t'\nu]}{\nu})} u_x^0(x' + \frac{2[s\xi]}{\xi} - \frac{[t'\nu]}{\nu}) d\mu_{\xi}(s) &= -\frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu})} u_x^0(\frac{[\rho u]}{\rho}) d\mu_{\rho}(u) \end{split}$$

so that;

$$u(x',t') \simeq u(x' + \frac{[t'\nu]}{\nu}, 0) + \frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu}]} u_t^0(\frac{[\rho u]}{\rho}) d\mu_\rho(u)$$
$$-\frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu}]} u_x^0(\frac{[\rho u]}{\rho}) d\mu_\rho(u), \ (* * **)$$

Using Lemma 0.10, we have that;

$$\frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu})} u_x^0(\frac{[\rho u]}{\rho}) d\mu_\rho(u) \simeq \frac{1}{2} (u^0(x' + \frac{[t'\nu]}{\nu}) - u^0(x' - \frac{[t'\nu]}{\nu})), \ (****)$$

Combining (* * **) and (* * * *), we obtain that;

$$\begin{split} u(x',t') &\simeq u(x' + \frac{[t'\nu]}{\nu}, 0) - \frac{1}{2}(u^0(x' + \frac{[t'\nu]}{\nu}) - u^0(x' - \frac{[t'\nu]}{\nu})) \\ &+ \frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu}]} u_t^0(\frac{[\rho u]}{\rho}) d\mu_\rho(u) \\ &= \frac{1}{2}(u^0(x' + \frac{[t'\nu]}{\nu}) - u^0(x' - \frac{[t'\nu]}{\nu})) \\ &+ \frac{1}{2} \int_{[x' - \frac{[t'\nu]}{\nu}, x' + \frac{[t'\nu]}{\nu}]} u_t^0(\frac{[\rho u]}{\rho}) d\mu_\rho(u) \\ &\simeq \frac{1}{2}(u^0(x' + t') - u^0(x' - t')) \\ &+ \frac{1}{2} \int_{[x' - t', x' + t'} u_t^0(w) d\mu_\eta(w) \\ &\text{as required.} \end{split}$$

Remarks 0.4. For finite values, this result matches d'Alembert's solution from the standard case, so the nonstandard wave equation is a reasonable model for pursuing a diffusion approach. This would help to understand photon paths, for example, in Maxwell's equation for zero charge and density.

Lemma 0.5. Let $F : {}^*\mathcal{R} \to {}^*\mathcal{R}$ be internal, and $\eta = \kappa \xi$ with $\kappa \in {}^*\mathcal{N}$, then;

$$((F)_{\eta})_{\xi} = (F)_{\xi}$$

Proof. Let $x = \frac{i}{\xi}$, with $i \in {}^*\mathcal{Z}$, then;

$$((F)_{\eta})_{\xi}(x) = F_{\eta}(x) = F_{\eta}(\frac{i}{\xi}) = F_{\eta}(\frac{i\kappa}{\eta})$$
$$= F(\frac{i\kappa}{\eta}) = F(\frac{i}{\xi}) = (F)_{\xi}(\frac{i}{\xi}) = (F)_{\xi}(x)$$

As both $((F)_{\eta})_{\xi}$ and $(F)_{\xi}$ are μ_{ξ} measurable, this proves the result.

Lemma 0.6. Let $f \in V(\overline{\mathcal{R}_{\eta}})$, with f^{D} S-continuous and bounded, then if $\epsilon \simeq 0$, with $\epsilon \sqrt{\eta}$ infinite, we have that;

$$f^{D_{\epsilon}} \simeq f^D$$

Proof. Let $\epsilon = \frac{n}{\sqrt{\eta}} + \delta$, with $0 \le \delta < \frac{1}{\sqrt{\eta}}$, and $n \in {}^*\mathcal{N}$ infinite, then;

$$f^{D_{\epsilon}}(x) = \frac{f(x+\epsilon) - f(x)}{\epsilon}$$
$$= \frac{f(x+\frac{n}{\sqrt{\eta}}) - f(x)}{\frac{n}{\sqrt{\eta}} + \delta}, \text{ as } f \in V(\overline{\mathcal{R}_{\eta}})$$

Without loss of generality, we have that;

$$\frac{n}{n+1}\frac{f(x+\frac{n}{\sqrt{\eta}})-f(x)}{\frac{n}{\sqrt{\eta}}} < \frac{f(x+\frac{n}{\sqrt{\eta}})-f(x)}{\frac{n}{\sqrt{\eta}}+\delta} < \frac{f(x+\frac{n}{\sqrt{\eta}})-f(x)}{\frac{n}{\sqrt{\eta}}}$$

and;

$$\frac{f(x+\frac{n}{\sqrt{\eta}})-f(x)}{\frac{n}{\sqrt{\eta}}}$$

$$=\frac{1}{n}*\sum_{k=0}^{n-1}\frac{f(x+\frac{k+1}{\sqrt{\eta}})-f(x+\frac{k}{\sqrt{\eta}})}{\frac{1}{\sqrt{\eta}}}$$

$$=\frac{1}{n}*\sum_{k=0}^{n-1}f^{D}(x+\frac{k}{\sqrt{\eta}})$$

$$\simeq f^{D}(x)$$

as f^D is S-continuous, so that;

$$f^D(x) \simeq \frac{n}{n+1} f^D(x) < f^{D_{\epsilon}}(x) < f^D(x)$$

as $\frac{n}{n+1} \simeq 1$ and $f^D(x)$ is finite, giving that $f^D(x) \simeq f^{D_{\epsilon}}(x)$

Lemma 0.7. Let $f \in V(\overline{\mathcal{R}_{\eta}} \times \overline{\mathcal{T}_{\nu}}), x : \overline{\mathcal{T}_{\xi}} \to \overline{\mathcal{R}_{\eta}}, y : \overline{\mathcal{T}_{\xi}} \to \overline{\mathcal{T}_{\nu}}, be$ measurable, with the forward derivatives $\{f_x^D, f_{xy}^D, f_t^D, x^D, y^D\}$ bounded. Then, if $H \in V(\overline{\mathcal{T}_{\nu}})$, with H(s) = f(x(s), y(s)), then;

$$H^D(s) \simeq f^D_x(x(s))x^D(s) + f^D_y(y(s))y^D(s)$$

when D relative to ξ is taken so that $\frac{\sqrt{\eta}}{\xi}$ and $\frac{\nu}{\xi}$ are infinite.

Proof. We have that;

$$\begin{split} H^{D}(s) &= \nu(H(s + \frac{1}{\xi}) - H(s)) \\ &= \nu(f(x(s + \frac{1}{\xi}), y(s + \frac{1}{\xi})) - f(x(s), y(s)))) \\ &= \nu(f(x(s + \frac{1}{\xi}), y(s + \frac{1}{\xi})) - f(x(s), y(s + \frac{1}{\xi})) \\ &+ \nu(f(x(s), y(s + \frac{1}{\xi})) - f(x(s), y(s)))) \\ &= \frac{(f(x(s + \frac{1}{\xi}), y(s + \frac{1}{\xi})) - f(x(s), y(s + \frac{1}{\xi})))}{x(s + \frac{1}{\xi}) - x(s)} \xi(x(s + \frac{1}{\xi}) - x(s)) \\ &+ \frac{(f(x(s), y(s + \frac{1}{\xi})) - f(x(s), y(s + \frac{1}{\xi})))}{y(s + \frac{1}{\xi}) - y(s)} \xi(y(s + \frac{1}{\xi}) - y(s)) \\ &= \frac{(f(x(s + \frac{1}{\xi}), y(s + \frac{1}{\xi})) - f(x(s), y(s + \frac{1}{\xi})))}{x(s + \frac{1}{\xi}) - x(s)} x^{D}(s) + \frac{(f(x(s), y(s + \frac{1}{\xi})) - f(x(s), y(s + \frac{1}{\xi})))}{y(s + \frac{1}{\xi}) - y(s)} y^{D}(s) \\ &= \frac{(f(x(s) + \epsilon, y(s + \frac{1}{\xi})) - f(x(s), y(s + \frac{1}{\xi})))}{\epsilon} x^{D}(s) + \frac{(f(x(s), y(s) + \delta) - f(x(s), y(s)))}{\delta} y^{D}(s) \\ &= f_{x}^{D_{\epsilon}}(x(s), y(s + \frac{1}{\xi})) x^{D}(s) + f_{y}^{D_{\delta}}(x(s), y(s)) y^{D}(s) \end{split}$$

with $\epsilon = x(s + \frac{1}{\xi}) - x(s) \simeq 0$ and $\delta = y(s + \frac{1}{\xi}) - y(s) \simeq 0$, as x^D and y^D are bounded.

We have $x^D(s) = \xi \epsilon = C$, $y^D(s) = \delta \epsilon = D$, with C, D finite, so that $\epsilon \sqrt{\eta} = \frac{C\sqrt{\eta}}{\xi}$ and $\delta \nu = \frac{D\nu}{\epsilon}$ are infinite, by the hypotheses. Applying the result of Lemma 0.6, we have $f_x^{D_{\epsilon}} \simeq f_x^D$, and $f_y^{D_{\delta}} \simeq f_y^D$, so;

$$H^{D}(s) \simeq f_{x}^{D}(x(s), y(s+\frac{1}{\xi}))x^{D}(s) + f_{y}^{D}(x(s), y(s))y^{D}(s)$$

As f_{xy}^D is bounded (finite position), f_x^D is S-continuous in y, so that;

$$H^{D}(s) \simeq f_{x}^{D}(x(s), y(s))x^{D}(s) + f_{y}^{D}(x(s), y(s))y^{D}(s)$$

as required.

Lemma 0.8. If $H \in V(\overline{\mathcal{T}_{\xi}})$ has the property that;

$$\begin{aligned} H^{D}(s) &\simeq 0\\ \text{for } s \in \overline{\mathcal{T}_{\xi}} \text{ with } s \text{ finite, then;}\\ H(0) &\simeq H(s)\\ \text{for } s \in \overline{\mathcal{T}_{\xi}} \text{ with } s \text{ finite.}\\ \text{If } G, R \subset V(\overline{\mathcal{T}_{\xi}}) \text{ have the property that;}\\ G^{D}(s) &\simeq R(s)\\ \text{for } s \in \overline{\mathcal{T}_{\xi}} \text{ with } s \text{ finite, then;}\\ G(s) &\simeq G(0) + \int_{[0, \frac{|s\xi|}{\xi})} R(w) d\mu_{\xi}(w)\\ \text{for } s \in \overline{\mathcal{T}_{\xi}} \text{ with } s \text{ finite.} \end{aligned}$$

Proof. Using the definition of D, we have that;

$$\begin{aligned} |H(s) - H(0)| &= |\frac{1}{\xi} \sum_{k=0}^{[s\xi]-1} \xi(H(\frac{k+1}{\xi}) - H(\frac{k}{\xi}))| \\ &= |\int_{[0, \frac{[s\xi]}{\xi})} H^D(w) d\mu_{\xi}(w)| \\ &\leq \int_{[0, \frac{[s\xi]}{\xi})} |H^D(w)| d\mu_{\xi}(w) \\ &\leq \epsilon \int_{[0, \frac{[s\xi]}{\xi})} d\mu_{\xi}(w) \\ &\leq \epsilon \frac{[s\xi]}{\xi} \end{aligned}$$

where $\epsilon \in \mathcal{R}_{>0}$ is arbitrary. As $\frac{[s\xi]}{\xi}$ is finite, we conclude that; $|H(s) - H(0)| \simeq 0$

as required for the first result. For the second result;

$$\begin{aligned} |G(s) - G(0) - \int_{[0, \frac{[s\xi]}{\xi}]} R(w) d\mu_{\xi}(w)| \\ &= |\frac{1}{\xi} \sum_{k=0}^{[s\xi]-1} \xi(H(\frac{k+1}{\xi}) - H(\frac{k}{\xi})) - \int_{[0, \frac{[s\xi]}{\xi}]} R(w) d\mu_{\xi}(w)| \\ &= |\int_{[0, \frac{[s\xi]}{\xi}]} H^{D}(w) d\mu_{\xi}(w) - \int_{[0, \frac{[s\xi]}{\xi}]} R(w) d\mu_{\xi}(w)| \\ &\leq \int_{[0, \frac{[s\xi]}{\xi}]} |(H^{D} - R)(w)| d\mu_{\xi}(w) \\ &\leq \epsilon \int_{[0, \frac{[s\xi]}{\xi}]} d\mu_{\xi}(w) \\ &\leq \epsilon \frac{[s\xi]}{\xi} \end{aligned}$$

where $\epsilon \in \mathcal{R}_{>0}$ is arbitrary. As $\frac{[s\xi]}{\xi}$ is finite, we conclude that;

$$|G(s) - G(0) - \int_{[0, \frac{[s\xi]}{\xi}]} R(w) d\mu_{\xi}(w)| \simeq 0$$
 as required.

Lemma 0.9. Integration by Substitution Suppose $\{a, b\} \subset \mathcal{R}$, and let $f \in C([a, b])$ be continuous with corresponding $f_{\eta} \in V(\overline{\mathcal{R}_{\eta}} \cap *[a, b])$, suppose that $h : [h^{-1}(a), h^{-1}(b)] \to [a, b]$ is continuous and increasing, so invertible, with corresponding $h_{\xi} \in V(\overline{\mathcal{R}_{\xi}} \cap *[h^{-1}(a), h^{-1}(b)])$, and forward derivative h_{ξ}^{D} , then;

$$\int_{\overline{\mathcal{R}_{\eta}}\cap^*[a,b)} f_{\eta}(x)d\mu_{\eta}(x) \simeq \int_{\overline{\mathcal{R}_{\xi}}\cap^*[h^{-1}(a),h^{-1}(b))} (f_{\eta} \circ h_{\xi})(y)h_{\xi}^D(y)d\mu_{\xi}(y)$$

provided $\frac{\eta}{\xi}$ is infinite.

Proof. For bounded $f \in V(\overline{\mathcal{R}_{\eta}} \cap^*[a, b))$, we define the measure $\mu_{\eta, l, f}$ by;

$$\mu_{\eta,l,f}(\left[\frac{i}{\xi},\frac{i+1}{\xi}\right)) = (f_{\eta} \circ h_{\xi})(\frac{i}{\xi})\mu_{\eta}\left[\frac{\left[\eta h_{\xi}(\frac{i}{\xi})\right]}{\eta},\frac{\left[\eta h_{\xi}(\frac{i+1}{\xi})\right]}{\eta}\right)$$

and extend linearly to *-finite unions of intervals in the corresponding *-algebra \mathfrak{B} . We have that $\mu_{\eta}\left[\frac{[\eta h_{\xi}(\frac{i}{\xi})]}{\eta}, \frac{[\eta h_{\xi}(\frac{i+1}{\xi})]}{\eta}\right)$

$$= \frac{[\eta h_{\xi}(\frac{i+1}{\xi})]}{\eta} - \frac{[\eta h_{\xi}(\frac{i}{\xi})]}{\eta}$$
$$= \left(\frac{h_{\xi}(\frac{i+1}{\xi}) - \delta}{\eta}\right) - \left(\frac{h_{\xi}(\frac{i}{\xi}) - \delta'}{\eta}\right)$$

$$= \left(\frac{h_{\xi}(\frac{i+1}{\xi}) - h_{\xi}(\frac{i}{\xi}) - \delta''}{\eta}\right)$$

where $0 \le \delta < 1, \ 0 \le \delta' < 1$ and $0 \le |\delta''| < 1$.

so that;

$$\left|\mu_{\eta}\left[\frac{[\eta h_{\xi}(\frac{i}{\xi})]}{\eta}, \frac{[\eta h_{\xi}(\frac{i+1}{\xi})]}{\eta}\right) - \left(h_{\xi}\left(\frac{i+1}{\xi}\right) - h_{\xi}\left(\frac{i}{\xi}\right)\right)\right| \le \left|\frac{\delta''}{\eta}\right| \le \frac{1}{\eta}$$

and;

$$\begin{split} &\mu_{\eta} \left[\frac{[\eta h_{\eta}(\frac{i}{\eta})]}{\eta}, \frac{[\eta h_{\eta}(\frac{i+1}{\eta})]}{\eta} \right) \simeq \left(h_{\eta}(\frac{i+1}{\eta}) - h_{\eta}(\frac{i}{\eta}) \right) \\ &\text{and, as } f_{\eta} \text{ is bounded, with } |f_{\eta}| \leq C; \\ &|f_{\eta}(h_{\xi}(\frac{i}{\xi})) \mu_{\eta} \left[\frac{[\eta h_{\xi}(\frac{i}{\xi})]}{\eta}, \frac{[\eta h_{\xi}(\frac{i+1}{\xi})]}{\eta} \right) - f_{\eta}(h_{\xi}(\frac{i}{\xi})) (h_{\xi}(\frac{i+1}{\xi}) - h_{\xi}(\frac{i}{\xi}))| \\ &\leq \left| \frac{C\delta''}{\eta} \right| \\ &\leq \frac{C}{\eta} \simeq 0, \ (\dagger) \end{split}$$

In particularly, letting $\kappa = [\xi g^{-1}(b)] - [\xi g^{-1}(a)]$, we have that $\frac{C\kappa}{\eta} \simeq 0$ if $\frac{\eta}{\xi}$ is infinite, (††);

Then, using (†);

$$f_{\eta}(h_{\xi}(\frac{i}{\xi}))\mu_{\eta}[\frac{[\eta h_{\xi}(\frac{i}{\xi})]}{\eta}, \frac{[\eta h_{\xi}(\frac{i+1}{\xi})]}{\eta})$$

$$\simeq f_{\eta}(h_{\xi}(\frac{i}{\xi}))(h_{\xi}(\frac{i+1}{\xi}) - h_{\xi}(\frac{i}{\xi}))$$

$$= \frac{1}{\xi}f_{\eta}(h_{\xi}(\frac{i}{\xi}))h_{xi}^{D}(\frac{i}{\xi}), (*)$$

We claim that for f as in the statement of the lemma;

 $\int_{[a,b)} f_{\eta} d\mu_{\eta} = \int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,f}$ (†), in which case, we obtain the result, as, using (*) and (††);

$$\begin{split} &\int_{[a,b)} f_{\eta}(x) d\mu_{\eta}(x) \\ &= \int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,f} \end{split}$$

$$= * \sum_{[\xi h^{-1}(a)] \le i \le [\xi h^{-1}(b)]} \mu_{\eta,l,f}([\frac{i}{\xi}, \frac{i+1}{\xi}))$$

$$\simeq * \sum_{[\xi h^{-1}(a)] \le i \le [\xi h^{-1}(b)]} f_{\eta}(h_{xi}(\frac{i}{\xi})) \frac{1}{\xi} h_{\xi}^{D}(\frac{i}{\xi})$$

$$= \frac{1}{\xi} * \sum_{[\xi h^{-1}(a)] \le i \le [\xi h^{-1}(b)]} f_{\eta}(h_{\xi}(\frac{i}{\xi})) h_{\xi}^{D}(\frac{i}{\xi})$$

$$= \int_{[h^{-1}(a), h^{-1}(b))} f_{\eta}(h_{\xi}(y) h_{\xi}^{D}(y) d\mu_{\xi}(y)$$

$$= \int_{[h^{-1}(a), h^{-1}(b))} (f_{\eta} \circ h_{\xi})(y) h_{\xi}^{D}(y) d\mu_{\xi}(y)$$

In order to show (†), we first consider the case when $g = \chi_{(c,d)}$ with $(c,d) \subset [a,b)$. Then, using the argument above and the fact that $\chi_{(c,d)}$ is bounded;

$$\begin{split} &\int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,g_{\eta}} \\ &\simeq ^* \sum_{[\eta h^{-1}(a)] \leq i \leq [\eta h^{-1}(b)]} (f \circ h_{\xi}) (\frac{i}{\xi}) (h_{\xi}(\frac{i+1}{\xi}) - h_{\xi}(\frac{i}{\xi})) \\ &= ^* \sum_{r_c \leq i \leq r_d} (h_{\xi}(\frac{i+1}{\xi}) - h_{\xi}(\frac{i}{\xi})) \\ &= h_{\xi}(\frac{r_d+1}{\xi}) - h_{\xi}(\frac{r_c}{\xi}) \\ &\simeq (d-c) \\ &\simeq \int_{[a,b)} \chi_{(c,d)} d\mu_{\eta} \\ &= \int_{[a,b)} f d\mu_{\eta}. \\ &\text{ as } h \text{ is continuous, where } r_c = \min(\{i : h_{\xi}(\frac{i}{\xi}) \geq c\}), r_d = \max(\{i : h_{\xi}(\frac{i}{\xi}) \leq d\}), \end{split}$$

By a similar argument, we can show that, if $f_r = \lambda_1 \chi_{(c_1,d_1)} + \dots \lambda_r \chi_{(c_r,d_r)}$ is a finite combination of characteristic functions, then;

$$\int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,f_{r,\eta}} \simeq \int_{[a,b)} f_{r,\eta} d\mu_{\eta} \ (\sharp)$$

Now, considering the case when f is continuous on [a, b], we can find a sequence $\{f_r : r \in \mathcal{N}\}$, such that $\lim_{r\to\infty} f_r = f$ pointwise, and each f_r has the property (\sharp).

We claim first that $\lim_{r\to\infty} (\int_{[a,b)} f_{r,\eta} d\mu_{\eta}) = (\int_{[a,b)} f_{\eta} d\mu_{\eta}), (\sharp \sharp)$. This follows as;

$$\begin{split} lim_{r \to \infty} \circ (\int_{[a,b)} f_{r,\eta} d\mu_{\eta}) \\ &= lim_{r \to \infty} \int_{[a,b)} \circ f_{r,\eta} dL(\mu_{\eta}) \\ &= lim_{r \to \infty} \int_{[a,b)} f_r d\mu \\ &= \int_{[a,b)} f d\mu \\ &= \int_{[a,b)} \circ f_{\eta} dL(\mu_{\eta}) \\ &= \circ (\int_{[a,b)} f_{\eta} d\mu_{\eta}) \end{split}$$

using the definition of the Riemann integral, together with the facts that f_{η} and $\{f_{r,\eta} : r \in \mathcal{N}\}$, are S-continuous, S-integrable, and piecewise S-continuous, S-integrable respectively.

We claim, secondly, that;

$$\lim_{r \to \infty} \circ (\int_{[h^{-1}(a), h^{-1}(b))} d\mu_{\eta, l, f_{r, \eta}}) = \circ (\int_{[h^{-1}(a), h^{-1}(b))} d\mu_{\eta, l, f_{\eta}}), (\ddagger \ddagger \ddagger)$$

This follows, by observing that;

$$\begin{split} &|\int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,f_{r,\eta}} - \int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,f_{\eta}}| \\ &= |^* \sum_{[\xi h^{-1}(a)] \le i \le [\xi h^{-1}(b)]} (\mu_{\eta,l,f_{r,\eta}}([\frac{i}{\xi},\frac{i+1}{\xi})) - \mu_{\eta,l,f_{\eta}}([\frac{i}{\xi},\frac{i+1}{\xi}))) \\ &\le ^* \sum_{[\xi h^{-1}(a)] \le i \le [\xi h^{-1}(b)]} |f_{r,\eta} \circ h_{\xi}(\frac{i}{\xi}) - f_{\eta} \circ h_{\xi}(\frac{i}{\xi})| |h_{\xi}(\frac{i+1}{\xi}) - h_{\xi}(\frac{i}{\xi})| \\ &= \int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,|f_{\eta} - f_{r,\eta}|} \\ &\le C \epsilon_r \end{split}$$

when $|f_{\eta} - f_{r,\eta}| \leq \epsilon_r$, and $C \simeq b - a$, where $\lim_{r\to\infty} \epsilon_r = 0$ if we assume uniform convergence. Now define $U(s_{\eta}) = \int_{[a,b)} s_{\eta} d\mu_{\eta}$, and $T(s_{\eta}) = \int_{[h^{-1}(a),h^{-1}(b))} d\mu_{\eta,l,s_{\eta}}$. Then, we have, using $(\sharp), (\sharp\sharp), (\sharp\sharp\sharp), (\sharp\sharp\sharp)$, that;

$$\begin{aligned} &|U(f_{\eta}) - T(f_{\eta})| \\ &= |U(f_{\eta}) - U(f_{r,\eta}) + U(f_{r,\eta}) - T(f_{r,\eta}) + T(f_{r,\eta}) - T(f_{\eta})| \\ &\leq |U(f_{\eta}) - U(f_{r,\eta})| + |U(f_{r,\eta}) - T(f_{r,\eta})| + |T(f_{r,\eta}) - T(f_{\eta})| \end{aligned}$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

As ϵ was arbitrary, we obtain the result.

Lemma 0.10. Let $\{u, u^D, u^{D^2}\} \subset V(\overline{\mathcal{T}_{\nu}})$ be bounded, and let $\nu = \kappa \xi$, with $\kappa \in {}^*\mathcal{N}$ and κ infinite. Let $(u^D)_{\xi} \in V(\overline{\mathcal{T}_{\xi}})$ be the measurable counterpart of u^D . Then, if $\{a, b\} \subset \overline{\mathcal{T}_{\xi}}$ are finite ;

$$\int_{(a,b)} (u^D)_{\xi}(x) d\mu_{\xi}(x) \simeq u(b) - u(a)$$

Proof. For $0 \leq j \leq \kappa - 1$, let $(u^D)_{\xi,j}(x) = \nu(u(x + \frac{j+1}{\nu}) - u(x + \frac{j}{\nu}))$. We claim that for $0 \leq j \leq \kappa - 2$, $(u^D)_{\xi,j} \simeq (u^D)_{\xi,j+1}$, (†). We have that;

$$\begin{split} |(u^{D})_{\xi,j+1} - (u^{D})_{\xi,j}| \\ &= |\nu(u(x + \frac{j+2}{\nu}) - u(x + \frac{j+1}{\nu})) - \nu(u(x + \frac{j+1}{\nu}) - u(x + \frac{j}{\nu}))| \\ &= |\nu(u(x + \frac{j+2}{\nu}) - 2u(x + \frac{j+1}{\nu}) + u(x + \frac{j}{\nu}))| \\ &= \frac{1}{\nu} |\nu^{2}(u(x + \frac{j+2}{\nu}) - 2u(x + \frac{j+1}{\nu}) + u(x + \frac{j}{\nu}))| \\ &= \frac{1}{\nu} |(u^{D^{2}}(x + \frac{j}{\nu}))| \\ &\leq \frac{C}{\nu} \end{split}$$

with $C \in \mathcal{R}$. By the triangle inequality, we have that, for $0 \leq j_1 \leq j_2 \leq \kappa - 1$;

$$|(u^D)_{\xi,j_2} - (u^D)_{\xi,j_1}| \le \frac{C\kappa}{\nu} = \frac{C}{\xi} \simeq 0$$

It follow that;

$$(u^D)_{\xi} \simeq \frac{1}{\kappa} \sum_{j=0}^{\kappa-1} (u^D)_{\xi,j}$$

and;

$$\begin{split} &\int_{(a,b)} (u^D)_{\xi}(x) d\mu_{\xi})(x) \\ &\simeq \int_{(a,b)} \frac{1}{\kappa} \sum_{0 \le j \le \kappa - 1} (u^D)_{\xi,j} \end{split}$$

TRISTRAM DE PIRO

$$\begin{split} &= \frac{1}{\kappa\xi} * \sum [a\xi] \le i \le [b\xi] * \sum_{0 \le j \le \kappa - 1} \nu(u(\frac{i}{\xi} + \frac{j+1}{\nu}) - u(\frac{i}{\xi} + \frac{j}{\nu})) \\ &= \frac{\nu}{\kappa\xi} (u(\frac{[b\xi]+1}{\xi}) - u((\frac{[a\xi]}{\xi}))) \\ &= u(\frac{[b\xi]+1}{\xi}) - u((\frac{[a\xi]}{\xi})) \\ &\simeq u(b) - u(a) \end{split}$$

as u is S-continuous.

References

- [1] Advances in Nonstandard Analysis, Tristram de Piro, 2014, available at curvalinea.net
- [2] NonStandard Analysis and Physics, Tristram de Piro, 2014, available at magnarticstrix,net