A NONSTANDARD SOLUTION TO THE WAVE
EQUATION

TRISTRAM DE PIRO

ABSTRACT. We follow d’Alembert’s method for solving the stan-
dard wave equation, in the nonstandard case, and compare the
solutions.

Definition 0.1. Given u € V(R, x T,), we let;
ui(y,s) = viuly, s + £) = uly, s)), for (y.s) € Ry x (T;\ 57)
w(y, 8) = 5 uly + J5,) —uly — J5.8)), for (y.5) € Ry x Ty

We define the nonstandard unconvoluted wave equation, on R, X

(T, \ 251, 222y by,

Ut — Ugge = 0

Lemma 0.2. Given initial conditions {f,g} C V(R,) there ezists a
unique u € V(R, x T,) solving the nonstandard unconvoluted wave
equation, such that u® = f, and u9 = g, and;

u(z,t + %) = 2u(z,t + %) + 4y2u(x + ?, t)—(1+ #)u(m,t)

+imu(r — \/lﬁ,t), (%)

for (z,t) € Ry x (T, \ 21, =2

v

Moreover, if the standard initial conditions {u®, ud} are given with

8;( ) < D and 2 (“t) < D, uniformly, for finite (i,7) € N?, then for

(to, m0) € T, X an wzth to finite, and the choice n < 4v, Uipr|ty .z, and

Ugz|ty.zo @€ bounded, for the nonstandard equation generated by initial
0 0

conditions {v, v}, with v° = (u°),, v) = (uf),.
Proof. Using the definition of the derivatives, the equation in Defini-

tion 0.1, and rearranging, we obtain the defining schema for u given in
1
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(¥). We are free to choose the values for the first two time steps, by
setting;

u(z,0) = f(x)
u(z,0) = v(u(z, ;) — u(,0)) = g(z)

First, observe, using Taylors’ Theorem, that v2, and vf,. are bounded.
Suppose inductively, that there exists a constant C; € R, for * finite,
with;

mar({u; go,ue, 2" :0<j<d,0<k<i—1}) <

for n even, where v,» denotes the n’th derivative of v with respect
to .

We have that;

and taking the n’th even derivative with respect to x;

Ugn (@, 1) = 2un (2, L) + T vun (@ +

: : 2 ) (Lt o (2.5
+#'an (ﬂf — \/l’ﬁ’ %)
Abbreviating notation;

_ _ n_(,,lsh?
Vi tgn = V(Ui—l-l,a:" — ULG) = V(2Ui7xn —Vj_1gn T m(viimn — 21)1'_17zn +

0P L) = Vign )

n Ish? rsh?
V(Vign = Vicron) + 45 (VT a0 — 20100 + 07 )
_ 1
= Vi—1tan + 7, Vi—1,zn+2

Vi tan | < |Vic1gan| + 55 |[Vi1 gt

<C+itc=cCc1+21)
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_ Ish? h?
Vitan = 2ign + 3 (U0 o0 — (L4 55)Vic1an + 7507 4n)

42 Yi—1l,a™

_ Ish? h?
= Vign — Vi-1an + Vign + 13 (V0] on — 20i-1.0n + V7] )
__ Yi—1,ta” n
= Yol 4yt m(vz‘—l,x"”)
Vit1en] < €+ C(1+ 1)

i+l | =~ 7 402
[terating, we obtain that;

for finite ¢;

[Vt tan | < C(1+ %)[Vt]

v
[vt]

=C(1+4)

[vt]
~ Ce*v ~ Cett

[vgan] < C(1+ L 4+ )0

with n < 4v, as required. A similar argument works for the odd
derivatives {ugn, ugzn }, with n € A odd.

O

Lemma 0.3. Suppose that u satisfies the nonstandard equation in

. . . . 9 8’(u0)
Lemma 0.2, with the extra assumption that for finite (i,7) € N?, B

8;;%?) are bounded, for finite (x,t) € R,xT,. Then, for such (z,t) ;

and
u(w,t) = g(ule +,0) +ule —,0) + [, . uf(w)dpy(w)

In particularly, if F satisfies the standard wave equation on ﬁg, with
the property that F°, F? C C*°(R), then if u satisfies the nonstandard
equation with initial conditions {(F°),, (F}),}, we have that u is S-
continuous for finite (x,t) € ﬁn x T, and;
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u(z,t) = F(°x,°t)
Proof. By the previous lemma, all finite derivatives of the form wu,» and

Usen are uniformly bounded. Factoring the equation uy — uz, = 0, we
obtain that;

v )

for (z,t) € R, x (T, \ =L @) Setting v = uy — u,, with (x,t) €
2_

Ut‘i‘Ux—O
0 = —ul, (k* %)

2

the first line of (+ % %) holding when (z,t) € R, x (T, \ ©1, %
Given finite (x,t), we define H,; : T; — *R by ;

vz

Hmﬁt(s):v(x—%,t—%):v(x—@ M—@)

Using (* * %) and the following Lemmas, 0.7 and 0.8, for finite
{z0, 1o, s}, with z(s) = [S] and y(s) = — L1 g] , so that 2P (s) = yP(s) =
—1, we have that;

S
%xo,to - (_% - E)|xo—5,to—s ~ 0

so that;

(g — ug) (0, to) = v(w0,t0) = Hag,1o(0) =~ Haypy 1 (S0)

(where sq is chosen so that [52_5] = ti”] ~ tO”]' ; writing § = 2, with x
infinite, we have [5251 [t?/"], iff ”[} I to”] ff [22] = [to"] Replacing

[tov] with [tor] + 7, where 0 < r < g, and [tiv] = [to ] + 7, so that
to ] [th]

k|[tiv] and, as |[Z| < |&] = | | ~ 0, we must have =24 We can
then solve [*¢] = %, taking [tlyV] < 50 < [twy} =)

= v(zo — [52_5]’ [tor] _ M)

~ v(zo — [s08] [tar] _ M)
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= v(zo — £, 0)
_ [y 0
= v(xo ,0)
~ _ oVl
~ U(IQ L )

Here, we have used the facts that v is S-continuous in t, and v° is
S-continuous in x, consequent on (u; — u,) S-continuous in t or uy

and wuy, bounded, and (u; — u,)? is S-continuous in x or uY, and u?,

bounded. These results follow as uy = tg,, both us, = u, and u,, are
bounded by the result of the previous lemma.

= uy — ug(zo — 124, 0)

M)_

v

M)

= ud(zy — ud(xo — 24), (3 * #x)

Rewriting (* * #x) as (u; — ug)(2',t") ~ h(2',t")

with h(z',t') = ud(2’ — [t'_V]) — W0 — [t'u})
define O, 4 : Té — *R by ;
O (s) = u(’ + 1 — L)

Then, using (* * *x) ,the definition of A, and Lemmas 0.7 and 0.8
again, this time with z(s) = [Sf], so that 2P (s) =1 ;

o’ (8_u _ 8_u)|
dt o/ t/ — \Oz ot x’+%,t/f%

<gz %¥>| /+[57V’/],t/7¥

(S-continuity of u, in x and w; in ¢, consequent on wu,, and uy
bounded, follows from the previous lemma.)

~ h( + [su] t/ [sr/])
— —u0(a! + L — lely 0 4 ] [l

v

= (e + LA — By o 4 2 1) ()
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We have, as above, that;
O 1 (0) = u(z', 1)
O (1) = u(a’ + 0, ¢ = I01) = w(a’ + 171, 0), (x5 x5 5)
Using Lemma 0.8, (% * % * %) and ({), we obtain;
e+ 2,0) — uf,0)
~ 0,4(t) ~ ©,4(0)
- f[o,[t’T”]) Cil_(?:’,t/d/lf(w)
Nf o3 Ut '+ [su] [t,l,y])‘ir (x +2[su] [tu])dlu (s)

so that, using Lemma 0.5 and Lemma 0.9;

u(x' 1)

~ w2’ + 71,0 *wwwm<+*W¢%ww>

v

f[o o 2[514 [tu )du ( )
:wf+%im+mw%w%ﬂ+%] L) dpue (s)
~ Jio (@’ + 2 = )dpie(s)
:Mf+¥ﬁﬂﬂw%wwﬂqf—%Ww@

f[O [t/u] l’ + @ — H—y”)dﬂg(é’)

Now let s = h,(u) = TTW, where £ = kp and k € *N is infinite,
then, letting w ¢(s) = ud (2! +28 — LUV]), we have, by refinement, that;

(wre © hy)(u) = uf(a +2(~—5—) = 1) = up(I2)

hy (u) = 3

and, using Lemma 0.9;
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2[35] ] _1 0 lpul
f[o [t'v] ut I + v )dluf(s) - 2 f[x/_Lu"],x/+Lu"]) ut(T)d:uﬂ(u)

)dﬂf( ) - % f[x’fﬂ,xurﬂ) ug(%)d“p(u)

f[o ] (x +2[S§
so that;
u(e ) = ua+ E,0) 4 3 [ ) w2y ()

St 02 ), ()

Using Lemma 0.10, we have that;

oty ) 022 (1)
~ 2(ul(2' + [t”]) ul (2’ — WT"])), ( * * * %)
Combining (x * %) and (x * * * %), we obtain that;

u(@ ) = ule’ + ,0) = J(u (2’ + 5) — (2 = 190))

4 e ey w2y ()

= 3@+ ) =@ = )

v

+5 J}/ [t'v] /+[t/])ut( )d:up( )
~ 2(ul(2 +t) — (2 = 1)
+3 f[x —t/ x’' +t ut( )d“ﬁ( )

as required.
O

Remarks 0.4. For finite values, this result matches d’Alembert’s so-
lution from the standard case, so the nonstandard wave equation is a
reasonable model for pursuing a diffusion approach. This would help to
understand photon paths, for example, in Mazxwell’s equation for zero
charge and density.

Lemma 0.5. Let F: *R — *R be internal, and n = k€ with k € *N,
then;
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((F)y)e = (F

~—

3

Proof. Let x = %, with i € *Z, then;

(F)ye(x) = Fy(x) = Fn(%) = Fn(%)

As both ((F),)e and (F), are pe measurable, this proves the result.
U

Lemma 0.6. Let f € V(R,,), with fP S-continuous and bounded, then
if € = 0, with e,/n infinite, we have that;
fD6 ~ fD
Proof. Let e = 7 +4, with 0 < 6§ < 7’ and n € *A infinite, then;
fDe (z) = flzt+e)—f(=z)

f(fer =)—f(z)

f+5 ,as f € V(R,)

Without loss of generality, we have that;

o et 5@ - fla+7=)—f (@) f(:v+ =)—f(x)
n+1 % \%Jré %
and;
fla+7=)— (=)

Vi

14 -1 FEHEE) —fle+5)
T n k=0 T
Vi

=X/t 5
~ fP(z)

as fP is S-continuous, so that;

fP(@) = 25 fP (@) < fP(z) < fP(2)

as -t ~ 1 and fP(z) is finite, giving that f”(z) ~ f"<(z)



A NONSTANDARD SOLUTION TO THE WAVE EQUATION 9

O

Lemma 0.7. Let f € V(R, xT,), v : Te > R,, vy : Te = T,, be

measurable, with the forward derivatives { f2, ag, D 2P yP} bounded.

Then, if H € V(T,), with H(s) = f(z(s),y(s)), then;

HP(s) ~ fP(x(s))2P(s) + L (y(s))y" (5)

when D relative to & is taken so that %' and ¥ are infinite.
Proof. We have that;

HP(s) = v(H(s + }) — H(s))

= v(f(x(s+¢)y(s + §) — fla(s) y(5)))

= v(f(@(s + ) u(s + ) = f(2(s),y(s + ¢))

+u(f((s), y(s + ) — f(x(s), y(s)))
(F(a(st2) (s 1)~ () y(s+ 1))

_ 1y
- I(S-‘r%)—l‘(s) {(x(s + f) ':E(S))
(f(2()y(s+ )= F(2(s)y(s) 1
+ y(s-l—%)—y(s) g(y(s + E) - y(S))
D )T h) oo () —IE@us) p
- 2(s+D—a(s) vils) + Yot D-9(s) yo(s)

(f(@(s)+ey(s+¢))—f(z(s), y(s+ ) z(8),y(s)+6)—f(x(s),y(s
_ : 2P (s) 4+ YU T @6y, D)

€

= f2(x(s),y(s + )" (s) + £, (x(5), y(s))y” (s)

with € = z(s + %) —x(s) ~0and § = y(s+ %) —y(s) ~0, as 2P and
y? are bounded.

We have 2P (s) = e = C, yP(s) = de = D, with C, D finite, so that
€/ = SV and dv = D Y are infinite, by the hypotheses. Applying the
result of Lemma 0.6, we have fP< ~ fP and fPo ~ fP so;

HP(s) 2 f(x(s),y(s + )" (s) + £, (x(s), y(s))y" (5)

As fB is bounded (finite position), f is S-continuous in y, so that;
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HP(s) = f(x(s),y(s))x"(s) + £, (x(s), y(s))y" (s)

as required.

Lemma 0.8. If H € V(T;) has the property that;
HP(s)~0

for s € T¢ with s finite, then;

for s € T with s finite.

If G, R C V(T¢) have the property that;

for s € Tg with s finite, then;
G(s) = G(0) + [y 1) R(w)dpe(w)

for s € Tg with s finite.

Proof. Using the definition of D, we have that;

|H(s) = H(0)| = |¢* 55 "e(H () - H(D)]

where € € R is arbitrary. As % is finite, we conclude that;
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as required for the first result. For the second result;

G(s) = G(0) = [y 0, R(w)dpe(w)
= |t z[sﬂ '¢(H <k§1 H(%) f[o tt) R(w)dpg(w)|
= [ o laa) H” (w)dpe(w) = [ pa) R(w)dpe(w)]
< fip ) ICH = R)(w)dpe(w)
< € Jip k1) A (w)
<ed
where € € R~ is arbitrary. As k g is finite, we conclude that;
|G(s) f[o Isel w)dpe(w)| > 0 as required.

O

Lemma 0.9. Integration by Substitution Suppose {a,b} C R, and let
f € C([a,b]) be continuous with corresponding f, € V(R, N *[a,b)),
suppose that h : [h='(a), h"1(b)] — [a,b] is continuous and increasing,
so invertible, with corresponding he € V(Re N *[h~1(a),h=1(b))), and
forward derivative h? , then,

fﬁm*[a,b) fn )d:un fR A*[h=1(a),h —1(b))<f77 o hE)(y)th(y)dﬂﬁ(y)

provided g is infinite.
Proof. For bounded f € V(R,N*[a,b)), we define the measure j,, s by;

i i i [nhe (L)) [nhe(FEL)]
pn s ([ 52) = (fy 0 he) ([ —5= —)

and extend linearly to *-finite unions of intervals in the correspond-

i [S)
ing x-algebra 8. We have that un[[nhgn({)}, [nhg(n s )])
_ Inhe(5ED] e ()]
n

he(2)—=6'
(=—5—)

he(“E)—8
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where 0 <9< 1,0< ¢ <land 0< |0 < 1.

so that;

[nhe (L)) [nhe(SE1)] i i 7z
g[S ROy () — he(9))] < |57] <

3=

and;

[hn(2)] [nhy(751)] i i
po 2, PGSy o (1 () = ()

and, as f, is bounded, with |f,| < C;

[nhe(£)]  [nhe (E

(e (g[S TCEy  p (he(£)) (e (H2) — e (4)]

<<

<

31Q

~ 0, (1)

In particularly, letting x = [£g7(b)] —[£97" (a)], we have that % ~ ()

if g is infinite, (1) ;

Then, using (1);
i [nhe(£)]  [nhe(“EH)]
Falhe ()=, =)

=~ fo(he(§)) (he(5) — he(2))
= ¢fo(he(2))h (), (+)

We claim that for f as in the statement of the lemma;

f[a,b) fndpiy = f[hfl(a)vhﬂ(b)) dping,r (1), in which case, we obtain the
result, as, using (x) and ({1);

f[ab f’] dﬂn( )

= S @m0 Winis
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Z[gh a)]<i<[eh—1 ()]lef([% %1))
~ " P en-1 @zizien-1 onSn(hai () e (2)
= %* Z[ l(a)]<i<[¢h1 fn( (%)) 3 (%)
= Jin-r(@yn-10y) Fn(he @I () dpae (y)
= Jin-r(@y -1y (o © he) (WRE () e ()
In order to show (t), we first consider the case when g = x(.q) with

(c,d) C [a,b). Then, using the argument above and the fact that x(.q)
is bounded,;

Jinraynr ) Wenign
Y1 @)<isin- o) (0 ) () (he(F8) — he(§))

=" Drecicr, (he(F8) = he(2))

2 f) Xy

= f[a,b) . '
as h is continuous, where r. = min({i : he(g) = c}), ra = maz({i :

he(g) < d}),

By a similar argument, we can show that, if f, = A X(c,,.a)+- - A X(erdy)
is a finite combination of characteristic functions, then;

f[h‘l(a),h—l(b)) Ain1, fry = f[a’b) Jrndp, (8)

Now, considering the case when f is continuous on [a, b], we can find
a sequence {f, : v € N'}, such that lim,_ . f, = [ pointwise, and each
f has the property (f).

We claim first that limrﬁooo(f[&b) JrnQpy) = O(f[a’b) fndpy), (88). This
follows as;
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Limy—soo®( [ 4y frnditn)
= Lty [ ) Fra@L11)
= UMy o0 [, frdp
= f[a,b) fdp
= f[&b) * fnd L(pin)

- O<f[a,b) Sodin)

using the definition of the Riemann integral, together with the facts
that f, and {f., : r € N'}, are S-continuous, S-integrable, and piece-
wise S-continuous, S-integrable respectively.

We claim, secondly, that;

limr%ooo(f[h,l(a)vh,l(b)) din.f,.,) = O(j‘[hfl(a)ﬁfl(b)) dpina ), (888)
This follows, by observing that;

| f[h—l(a),h—l(b)) dfind fry — f[h—l(a),h—l(b)) dpin, ]

= [ Z[ghfl(a)]gig[ghfl(b)} (/’L"Ivl,fr,n([%" %)) - Mn,l,fn([%v %)))

< Y ien(ay<icien-1 oy | frn © Pe() = fy 0 he ()| he(F5) — he(§)]
= f[h*l(a),hfl(b)) i 1|y fr|

< Ce,

when |f, — fry] < €, and C' ~ b — a, where lim, , €, = 0 if we
assume uniform convergence. Now define U(s,) = f[a ) Spdpy,, and

T(50) = [ip-s(apn-1y BHintes,- Then, we have, using (2), (22). (b42), that;
[U(fn) =T ()l
=U(fy) = U(frm) + U(frn) = T(frn) +T(frn) = T(fn)]
<|\U(fy) = Ufe)l +1U(frn) = T(fr)l + [T (frn) = T(fy)]
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€ € € __
< 3 + 3 + 3 =€

As € was arbitrary, we obtain the result.
O

Lemma 0.10. Let {u,u”, u”’} C V(T) be bounded, and let v = K&,
with k € *N and k mﬁmte. Let (uP)¢ € V(T¢) be the measurable coun-
terpart of uP. Then, if {a,b} C T; are finite ;

Sy (@)e(@)dpe) () ~ u(b) — u(a)

v(u(z + 57) —u(z + 1)).

Proof. For 0 < j < k—1, let (u ) i(z) =
e~ (uP)e i1, (T). We have that;

We claim that for 0 < j < k-2, (u ) .

VAN
< Q

with C' € R. By the triangle inequality, we have that, for 0 < j; <
J2<k—1;

|(uD)£7j2 - (u )€J1| < CH % ~(

It follow that;

Siawy ?)e(@)dpie) ()
= f(a,b) . ZOSjSH—l(uD)EJ
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= ¢ 2] < i < " Eogycuv(ulz + 57) —u(i + 7))
(e —ul(E)

= w2 —u(())

~ u(b) — u(a)

as u is S-continuous.
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